УДК 680.181

ISSN 1729-4428

Б.К. Остафійчук, І.М. Гасюк, І.П. Яремій, Л.С. Кайкан, С.А. Галігузова, П.П. Якубовський, М.Я Січка

Структурні особливості гетеровалентно-заміщених Li_{0,5}Fe_{2,5}O₄шпінелей

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, Івано-Франківськ, 76025, Україна, E-mail: <u>haliguzova@rambler.ru</u> тел 8(0342)59-60-80

Досліджено впровадження літію в Li_{0.5}Fe_{2.5}O₄, заміщений іонами магнію і цинку. Запропоновано можливий катіонний розподіл на основі рентгенівської та мессбауерівської методик. Гальваностатичні вимірювання показали, що заміщення Fe3+ на Mg2+ відповідає зростанню питомої ємності з 421.9 до 505.7А год/кг і зважаючи на свою низьку вартість/токсичність, матеріал викликає інтерес в якості катоду для перезаряджуваних джерел струму.

Ключові слова: впровадження літію, літій-залізний оксид, шпінель, літієві елементи струму.

Стаття поступила до редакції 07.02.2008; прийнята до друку 15.06.2008.

Вступ

Інтенсифікація розвитку приладної сфери вимагає розробок та виробництва новітніх високоємнісних автономних джерел струму. Перезаряджувані літієві джерела струму (ЛДС), або літій-іонні акумулятори, є перспективними для використання в найрізноманітніших областях: від персональних комп'ютерів відеокамер. та стільникових телефонів аж до автомобілів і космічної техніки [1].

Найбільш поширеними катодними матеріалами у виробництві літій-іонних акумуляторів в даний час є кобальтит літію LiCoO2 [2] та літій-марганцева шпінель LiMn₂O₄ [3]. Система LiMn₂O₄ володіє структурою благородної шпінелі, причому іони літію, що входять у структуру, мають невелику енергію зв'язку і здатні покидати структуру під дією електростатичного поля, зумовленого зарядною напругою електрохімічної системи літієвий анод органічний електроліт - катод на основі LiMn₂O₄. Однак, незважаючи на високий електродний потенціал елементу комірки, дешевизну і екологічну безпечність, широкому використанню даної системи перешкоджають суттєві недоліки, серед яких можна відзначити незадовільні цикльованість та відтворюваність складів і структурних характеристик [4], що визначаються електронними властивостями компонентних елементів. Це зумовлено, в першу чергу, проблемою відтворення валентного стану марганцю і вмістом кисню у структурі при її насиченні чи збідненні літієм [5].

Подібність структур літій-марганцевої та літійзалізної шпінелі і вміст іонів літію в них були причиною здійснення спроби використати останню полікристалічну систему як катодний матеріал. В роботі [6] показано, що, низька ступінь електрохімічної деінтеркаляції літію з матриці $Li_{0.5}Fe_{2.5}O_4$ зумовлена наявністю у структурі іонів Fe²⁺, які відновлюють частину "гостьових" іонів Li⁺ до атомарного стану і, таким чином, виключають останній з електрохімічного процесу.

В роботі проведено дослідження впливу нестехіометричного заміщення заліза двовалентними іонами Mg^{2+} і Zn^{2+} у матриці літій-залізної шпінелі. Метою такого заміщення було зменшення кількості двовалентного заліза у структурі і подавлення ефекту відновлення літію в процесах його інтеркаляціїдеінтеркаляції.

I. Експериментальна частина

Синтез катодного матеріалу на основі літійзалізної шпінелі складу Li_{0.5}Fe_{2.5-v}Mg_vO₄ та $Li_{0.5}Zn_yFe_{2.5-y}O_4$ (y = 0; 0,1; 0,3; 0,6; 0,8; 1,0) здійснювався традиційною керамічною за технологією [7] із оксидів заліза, магнію і цинку та гідроксиду літію. Суміші порошків піддавалися помолу і гомогенізації у кульовому млині з дистильованої додаванням води. Після випаровування води формувалися брикети, які

просушувалися на повітрі при 120°С, а потім спікалися на повітрі при температурі 900°С протягом 5 год. Охолоджені разом з пічкою брикети розмелювалися, в результаті чого одержувався преспорошок із розмірами частинок ~0,1-0,2мкм; в якості зв'язуючої речовини додавався 10% розчин полівінілового спирту. Спресовані таблетки діаметром 17,0 мм і висотою 4 мм спікалися на повітрі. Для забезпечення різних структурних форм замішеної літій-залізної шпінелі завершальне спікання проводилось двома способами. Перша серія зразків синтезувалася при температурі 1000°C протягом 5 год з повільним охолодженням разом з пічкою. Другу серію зразків спікали при 1200°С протягом 3 год та швидко охолоджували шляхом їх гартування у воді від температури синтезу.

Фазовий аналіз та рентгеноструктурні дослідження проводились на дифрактометрі ДРОН-3 в Си-Кα випромінюванні в геометрії Брегга-Брентано в діапазоні кутів 20°≤2θ≤65°. Обробка рентгенограм здійснювалась за програмним пакетом FullProf.

При дослідженні літій-вмісних твердофазних систем рентгеноструктурним методом виникає

проблема правильного визначення кристалографічної локалізації атомів за вузлами структури і їх [8]. Однією з переваг ближнього оточення досліджуваних матеріалів є наявність у структурі великої кількості заліза і, відповідно можливості застосування для їх досліджень у-резонансної спектроскопії на ядрах Fe⁵⁷. Мессбауерівські спектри заліза отримувалися в режимі постійних прискорень на спектрометрі ЯГРС-4М з використанням джерела у-квантів Co⁵⁷ у хромовій матриці. Математична обробка вказаних спектрів проводилась 3 універсальної використанням мессбауерівської комп'ютерної програми MossWin.

II. Результати та обговорення

На рис.1 а, б представлені рентгенограми систем при заміщенні магнієм (а) та цинком (б). Як відомо, в незаміщеній літій-залізній шпінелі стехіометричного складу ($Li_{0.5}Fe_{2.5}O_4$) всі атоми літію локалізовані у октапідгратці, в той час як іони заліза розміщуються в тетра- і окта позиціях (випадок оберненої шпінелі)

Рис.1. Рентгенограми LiFe-шпінелей, заміщених іонами магнію Li_{0.5}Fe_{2.5-y} Mg_yO₄ (a) та цинку Li_{0.5}Zn_yFe_{2.5-y}O₄ (б), синтезовані при T=1000°C, охолоджені разом з пічкою.

Рис. 2. Залежність сталої гратки від складу системи $Li_{0.5}Fe_{2.5-y}Me_yO_4$: a) $Me=Zn^{2+}$, б) $Me=Mg^{2+}$.

Таблиця 1а

Структурні параметри досліджуваних літій-вмісних сполук шпінельного типу, заміщених іонами Mg2+

Зразок	Катіонний розподіл та фазовий склад,%	Параметри гратки шпінельної фази,нм		
		А		
y=0	$(Li_{0.045}Fe_{0.955})(Fe_{1.545}Li_{0.455})_{a\delta}O_{4-\delta}$	8.33475±0.0013		
y=0,1	$(Li_{0.041}Fe_{0.926}Mg_{0.033})(Fe_{1.474}Li_{0.459-\delta}Mg_{0.067 k\delta})O_4$	8.32724±0.0013		
y=0,3	$(Li_{0.197-\delta}Fe_{0.748}Mg_{0.055 k\delta})(Fe_{1.452}Li_{0.303}Mg_{0.245})O_4$	8.34960±0.0013		
y=0,6	$(Li_{0.211-\delta}Fe_{0.645}Mg_{0.144 k\delta})(Fe_{1.255}Li_{0.289}Mg_{0.456})O_4$	8.35849±0.0013		
y=0,8	$(Li_{0.119}Fe_{0.561}Mg_{0.320})(Fe_{1.139}Li_{0.381-\delta}Mg_{0.480 k\delta})O_4$	8.35819±0.0013		
y=1,0	$(Li_{0.206-\delta}Fe_{0.413}Mg_{0.38 k\delta})(Fe_{1.087}Li_{0.294}Mg_{0.620})O_4$	8.35868±0.0013		

Таблиця 1б

Структурні параметри досліджуваних літій-вмісних сполук шпінельного типу, заміщених іонами Zn²⁺

Зразок	Катіонний розподіл та фазон	Параметри гратки шпінельноїфази, нм	
			А
y=0	$(Li_{0.045}Fe_{0.955})(Fe_{1.545}Li_{0.455})_{a\delta}O_{4-\delta}$	_	8.33475±0.0008
y=0,1	$(Li_{0.13}Zn_{0.09}Fe_{0.78})[Li_{0.39}Fe_{1.61}]O_4$	_	8.33711±0.0008
y=0,3	$(Li_{0.12}Zn_{0.27}Fe_{0.61})[Li_{0.35}Fe_{1.65}]O_4$	_	8.36209±0.0008
y=0,6	$(Li_{0.18}Zn_{0.51}Fe_{0.31})[Li_{0.38}Fe_{1.62}]O_4$	сліди LiFeO ₂ – 0.08	8.39844 ± 0.0008
y=0,8	$(Zn_{0.66}Fe_{0.34})[Li_{0.22}Fe_{1.78}]O_4$	сліди LiFeO ₂ – 0.17	8.42911±0.0008
y=1,0	$(Zn)[Li_{0.4}Fe_{1.6}]O_4$	сліди LiFeO ₂ – 0.13 ZnO – 17.74	8.42729±0.0008

Рис. 3. Зміна розподілу компонентів за підгратками в залежності від вмісту іонів Mg²⁺.

[4]. Структурна формула системи може бути представлена у вигляді $\left(Fe^{3+}\right)_{rerpa}\left[Li^+_{0,5}Fe^{3+}_{1,5}\right]_{oktra}O_4$.

При частковому заміщенні заліза іонами цинку, які мають енергетичну перевагу до тетраоточення, літій залишається локалізованим в октапідгратці. На відміну від цинку, магній має дуже слабку перевагу до октаоточеня і локалізується в обидвох підгратках, відповідно зумовлюючи перерозподіл літію за підгратками. За даними рентгенодифрактометричних досліджень, усі магній-заміщені шпінелі є однофазними (табл. 1а), що пояснюється збільшенням термодинамічної стабільності шпінелі при наявності в її структурі магнію [8]. У зразках, заміщених іонами Zn^{2+} спостерігається утворення додаткових фаз при у \geq 0,6 (табл. 1б).

Спікання шпінелі при високих температурах і наступне її охолодження супроводжується наступними процесами: перерозподілом іонів між підгратками; упорядкуванням іонів в межах окремих підграток, анігіляцією або асоціацією точкових дефектів з утворенням кластерів, фазовим розпадом

308306	Tupumerp	v=0.0	v=0.1	v=0.3	v=0.6	v=0.8	v=1.0
opuson	I 0/	9 0,0	<i>j</i> 0,1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30 400	<i>j</i> 0,0	J 15 502
І шестірка	Імов,%	94,112	33,65	24,763	32,488	34,05	15,592
	$H_{e\varphi}$,T	50,89	49,66	46,66	47,13	45,92	46,267
	I _s ,мм/с	0,754	0,7	0,669	0,697	0,677	0,485
	Q,мм/с	0,152	0,18	0,171	0,204	0,177	-0,052
	W, мм/с	0,457	0,41	0,497	0,507	0,577	0,489
	Імов,%		54,85	54,52	46,01	42,75	54,237
рка	Н _{еф} , Т		51,07	49,147	49,434	48,552	47,129
ecrij	I _s , мм/с		0,769	0,753	0,76	0,763	0,77
Ш	Q,мм/с		0,191	0,187	0,195	0,172	0,28
	W,мм/с		0,409	0,527	0,495	0,56	0,712
	Імов,%		6,621	18,72	19,21	22,4	28,58
лет	I _s ,мм/с		0,537	0,548	0,538	0,564	0,511
l Ay6	Q,мм/с		0,563	0,56	0,566	0,547	0,535
_	W,мм/с		0,299	0,391	0,389	0,423	0,403
П дублет	Імов,%	5,89	4,878	1,994	2,289	0,798	1,589
	I _s ,мм/с	0,407	0,326	0,428	0,398	0,378	0,408
	Q,мм/с	2,568	2,68	2,426	2,44	2,506	2,413
	W,мм/с	0,418	0,299	0,391	0,389	0,423	0,403

Параметри мессбауерівських спектрів Fe⁵⁷ Lio Fe₂ 5O₄ замішених іонами Ме

шпінелі, а також втратою летких катіонів (Li^+ ; Zn^{2+}) та кисню [5]. Причому кисень, який вилітає в атмосферу при високих температурах, в процесі атмосфери охолодження надходить 3 i впроваджується в структуру, реставруючи аніонну підгратку. Вказаний кисень може займати як регулярні, так і нерегулярні положення, викликаючи цим незначні тетрагональні спотворення [9]. Нестача та надлишок кисню, а також його присутність в нерегулярних положеннях викликає суттєві зміни електричних та електрохімічних властивостей досліджуваних матеріалів.

Зміна параметра ґратки від складу і умов термообробки наведена на рис.2 a, б. У випадку Мдзаміщених шпінелей спостерігається зростання сталої гратки при у≤0,6, що можна пояснити утворенням катіонних вакансій. Всі реакції в процесі синтезу і наступних термообробках шпінелей відбуваються збереженні умови електронейтральності при кристалічної системи, отже заміщення тривалентного заліза двовалентними іонами супроводжуються відхиленням від стехіометрії, що проявляється у виникненні катіонних і аніонних вакансій. 3 урахуванням даних фактів проводився розрахунок катіонного розподілу іонів шпінелі за підгратками. Результати розрахунків наведені в таблицях 1 а) та 1 б) для різних ступенів заміщення. Як видно з таблиці 1 б), нестехіометричні системи, заміщені іонами цинку, залишаються однофазними тільки до у≤0,6. При подальшому заміщені спостерігається випадання фаз LiFeO² та ZnO.

Таблиця 2а

На рис.З наведено зміну розподілу компонентів системи за підгратками. Для шпінелей, заміщених іонами магнію, спостерігається поступове зменшення вмісту заліза в обох підгратках і одночасне збільшення вмісту магнію, що говорить про рівномірне входження іонів Mg^{2+} в обидві підгратки у співвідношенні, близькому до 1:2. Іони літію також перерозподіляються за обома підгратками; із зміною ступеня заміщення Mg^{2+} їх концентрація практично не змінюється.

Для вияснення можливого характеру перерозподілу іонів проводились мессбауерівські дослідження шпінелей в залежності від умов синтезу та впливу заміщення магнієм і цинком.

Мессбауерівські спектри Fe⁵⁷ від досліджуваних Мg-заміщених літій-залізних шпінелей показано на рис.4 (температура синтезу 1000°С). В усіх системах виявлені два підспектри у вигляді секстиплетів, що вказує на розподіл заліза в окта- і тетрапідгратках, та два парамагнітних дублети. Параметри мессбауерівських спектрів наведені в табл. 2 а).

Перерозподіл інтегральних інтенсивностей за підспектрами, ідентифікованими як компоненти від тетрапозиції (секстиплет №1) та октапозиції (секстиплет №1, №2) співпадає із

Таблиця 2б

Таблиця 26 Параметри мессбауерівських спектрів Fe ⁵⁷ Li _{0 5} Fe _{2 5} O ₄ заміщених іонами Zn							
зразок		y=0,0	y=0,1	y=0,3	y=0,6	y=0,8	y=1,0
стірка	Імов,%	94,112	62,786	32,065			
	H _{eφ} ,T	50,89	50,366	48,729			
	I _s ,мм/с	0,754	0,739	0,688			
I me	Q,мм/с	0,152	0,159	0,22			
	W,мм/с	0,457	0,429	0,452			
	Імов,%		33,122	36,446			
рка	H _{eφ} ,T		48,546	46,76			
ecrij	I _s ,мм/с		0,713	0,736			
II II	Q,мм/с		0,153	0,136			
	W,мм/с		0,468	0,491			
	Імов,%			18,346			
рка	Н _{еф} , Т			43,823			
iecri	I _s ,мм/с			0,696			
II	Q,мм/с			0,17			
Ι	W,мм/с			0,434			
	Імов,%			8,031			
рка	H _{eφ} ,T			39,852			
iecri	I _s ,мм/с			0,664			
N	Q,мм/с			0,144			
Π	W,мм/с			0,491			
	Імов,%	5,89	4,092	2,363			
лет	I _s ,мм/с	0,407	0,389	0,437			
І дуб.	Q,мм/с	2,567	2,532	2,652			
	W,мм/с	0,418	0,390	0,413			
	Імов,%			2,750	100	100	100
лег	I _s ,мм/с			0,747	0,529	0,524	0,544
I ду(Q,мм/с			0,478	0,975	0,578	0,397
Н	W,мм/с			0,452	0,305	0,242	0,369
			1	1	1		

Таблиця За

Катодні характеристики літій-іонних елементів на основі шпінелей допійованих іонами магнію та цинку

у	Час розряду комірки t, год.	Гостьове навантаження x (на формульну одиницю шпінелі)	Питома ємність С, А·год/кг	Питома енергія Е, Вт.год/кг
0,1	145,0	2,5	329,5	692,0
0,3	123,5	2,1	280,7	589,4
0,6	150,5	2,4	342,0	718,3
0,8	222,5	3,4	505,7	1061,9
1,0	175,0	2,6	397,7	835,2

у	Час розряду комірки t, год	Гостьове навантаження x (на формульну одиницю шпінелі)	Питома ємність C, А·год/кг	Питома енергія Е, Вт∙год/кг
0.0	189,0	3.3	421.9	928.1
0.1	116.5	2.1	260.0	595.8
0.3	116.5	2.1	260.0	580.9
0.6	189,0	2.7	335.9	720.3
0.8	118.5	2.2	264.5	555.5
1.0	92.5	1.7	206.5	409.2

Катодні характеристики літій-іонних елементів на основі шпінелей допійованих іонами

Таблиця Зб

Рис. 4. Мессбауерівські спектри поглинання Fe⁵⁷ від зразків літій-залізної шпінелі, заміщеної іонами магнію (температура синтезу 1000°С, охолоджені разом з пічкою).

знайденим за рентгенограмами розподілом катіонів заліза. Вміст двовалентного заліза, ідентифікований за дублетом з великим квадруполем ~2.5мм/с, непропорційний вмісту магнію в системі, і, очевидно, залежить від катіонного розподілу іонів у підгратках. Так, мінімальний його вміст спостерігається в зразку з у=0,8, який має катіонні вакансії в октапідгратці (див. табл. 1,2). Розрядні криві електрохімічних комірок, в яких у якості катодного матеріалу використані досліджувані системи, показали високі значення питомої ємності і енергії саме для зразка з у=0,8. На рис. 4 наведені розрядні криві досліджуваних систем, інтеркаляційні характеристики яких представлені в табл. 3.

Мессбауерівські спектри Fe⁵⁷ від досліджуваних Zn-заміщених Li-Fe-шпінелей показано на рис. 5

Структурні особливості гетеровалентно-заміщених Li0.5Fe2.5O4-шпінелей

Рис. 5. Мессбауерівські спектри поглинання Fe⁵⁷ від зразків літій-залізної шпінелі, заміщеної іонами цинку (температура синтезу 1000°С, охолоджені разом з пічкою).

Рис. 6. Розрядні криві електрохімічної комірки з катодами на основі Li-Fe-шпінелі, заміщеної: а) іонами магнію, б) іонами цинку.

(температура синтезу 1000°С).

Із зростанням вмісту цинку спостерігається збільшення кількості парціальних компонент

розкладу мессбауерівського спектру аж до 5 при у=0,3.

В подальшому локальне оточення заліза із

Рис. 7. Відносна усадка зразків Li-Fe-шпінелей заміщених а) іонами магнію, б) іонами цинку, d-діаметр дискового зразка.

октапозиції складають в основному немагнітні атоми цинку, імовірність оточення великою кількістю магнітних іонів зменшується, а це приводить як до зменшення кількості компонент розкладу, та до зміни їх виду, аж до перетворення у парамагнітні дублети. Характерним є факт, що ізомерний зсув всіх ліній спектру лежать в межах 0,21÷0,72мм/с при квадрупольному розщепленні 0,14-0,68 мм/с. Такий розподіл параметрів характерний для заліза у тривалентному стані. Таким чином, киснева нестехіометрія компенсує гетеровалентне заміщення Fe³⁺ на Zn²⁺, в результаті чого залізо при заміщенні не відновлюється.

Порівняння ступеня спікання (відношення $\frac{\Delta d}{d}$ лінійних розмірів зразків до і після спікання) в залежності від ступеня заміщення (рис. 7 а, б) із параметром гратки шпінелевої структури підтверджує перевагу механізму заліковування пор при спіканні над механізмом твердофазної рекристалізації.

Висновки

Гетеровалентні заміщення цинком у літійзалізній шпінелі приводять до руйнування надвпорядкування у октапідгратці з одночасним зростанням дефектності структури. При цьому локалізація іонів літію залишається октаедричною, що в результаті сприяє утворенню широких прямолінійних каналів для вільного входження літію при електрохімічній інтеркаляції.

Заміщення частини іонів заліза іонами магнію викликає відхилення від стехіометрії і зарядова компенсація забезпечується шляхом утворення катіонних та аніонних вакансій. Всі структурні зміни відбуваються в межах однофазності шпінелі, що дозволяє модифікувати систему в широких межах, не змінюючи її просторову групу симетрії. В той же час присутність заряджених катіонних вакансій значним чином впливає на електричні та електрохімічні властивості досліджуваного матеріалу, що дозволяє цілеспрямовано модифікувати матеріал і отримати електрохімічні літієві джерела струму з високими розрядними характеристиками.

Остафійчук Б.К. – проф.членкор НАН України;							
Гасюк І.М.	– канд.	фізм	ат.	наук,	доцент	кафедри	
матеріалознавства і новітніх технологій;							
Яремій І.П.	– канд.	фізм	1ат.	наук,	доцент	кафедри	
матеріалозна	авства і н	овітні	х тех	хноло	гій;		
Кайкан	Л.С.	-	ст.	лабор	ант	кафедри	
матеріалозна	авства і н	овітні	х те	хноло	гій;		
Галігузова	С.А.	- (ст.	лабс	рант	кафедри	
матеріалознавства і новітніх технологій;							
Якубовський П.П – аспірант;							
Січка М.Я. –	- аспіран	г.					
	-						

- [1] Е.А. Нижниковский Использование химических источников тока для электропитания миниатюрной радиоэлектронной аппаратуры // Электрохимическая энергетика, **2**(1), сс.35-45 (2002).
- [2] Н.В. Лапин, Н.Я. Дьянкова, и др. Сравнительное изучение синтеза и электрохимических свойств литированного оксида кобальта из различных исходных компонентов // Электрохимическая энергетика, **3**(3), сс.119-123 (2003).
- [3] И.Ю. Готлиб, И.В. Мурин, Е.М. Пиотровская. Молекулярно-динамическое моделирование твердых растворов Li_xMn₂O₄ со структурой шпинели с применением простых модельных потенциалов // Неорганические материалы, **39**(4), сс.489-494 (2003).

- [4] В.С. Дубасова, Е.В. Махонина, В.С. Первов Исследование поведения литий марганцевых шпинелей в качестве материала литий ионных аккумуляторов // Электрохимическая энергетика, **2**(3), сс. 111-115 (2002).
- [5] Э.И. Качибая, Р.А. Имнадзе, Т.В. Паикидзе. Структура и электрические свойства допированных кобальтом литий-марганцевых шпинелей для перезаряжаемых литиевых источников тока // Электрохимическая энергетика, 2(1), сс.12-17 (2002).
- [6] І.М. Гасюк, І.М. Будзуляк, С.А. Галігузова. Катодні матеріали літієвих акумуляторів струму на основі Li_{0.5}Fe_{2.5}O₄ // Наносистеми, наноматеріали, нанотехнології, **4**(3), сс. 613-622 (2006).
- [7] Ю.Д.Третьяков, Н.Н.Олейников, В.А.Граник. Кинетика процессов, происходящих при термической обработке ферритов. Гл.Ш. в кн. Физико-химические основы термической обработки ферритов. Изд. Московского университета, сс.158-174 (1973).
- [8] Б.К. Остафійчук, І.М. Гасюк, О.В. Копаєв. Модель твердого розчину магній-цинкових феритів // Фізика і хімія твердого тіла, 2(2), сс.201-206 (2002).
- [9] S.Mandal, R.M.Rojas, J.M.Anarilla. High Temperature Co-doped LiMn₂O₄-based Spineless. Structural, Electrical, and Electrochemical Characterization // Chem. Mater., 14, pp.1598-1605 (2002).

B.K. Ostafiychuk, I.M. Gasyuk I.P. Yaremiy, L.S. Kaykan, S.A. Galiguzova, P.P. Yakubovskiy, M.Y. Sichka

Structural Features of Heterovalent -Doped Li_{0.5}Fe_{2.5}O₄-Spinel

Vasyl Stefanyk PreCarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76000, Ukraine

We have studied the lithium insertion into $Li_{0.5}Fe_{2.5}O_4$ dopped by Mg and Zn. Probable cationic distribution were proposed based on XRD and Messbauer techniques. The galvanostatic measurements indicate that by replacing Fe3+ by Mg2+ corresponding to an increase in the ability to store charge from 421.9 to 505.7 A·h/kg and rendering this low cost/toxicity material of potential interest as a positive electrode in rechargeable lithium current source.