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Introduction

Low-energy ion implantation is widely used for the
formation of active areas in modern integrated
microcircuits elements. The combination of low-energy
(1-30 keV) ion implantation and rapid thermal annealing
allows fabricating devices with ultra-shallow junctions
[1-4]. Such technologies of impurity doping lead to the
formation of impurity profiles of a complex shape [5, 6].
The modelling of such processes is impossible without
application of physical and mathematical description
with a high degree of adequacy as well as involving
effective numerical methods. Application of the
commonly used process simulators like ATHENA
SSUPREM4 of SILVACO not always provides
satisfactory accurate results. In a surface region of the
semiconductor (1-50 nm depth), the impurity distribution
profiles calculated using such software can essentially
differ from experimental results [5, 6]. At the same time,
the exact information on dopant distribution in proximity
of the surface is necessary for effective calculation of the
electric characteristics of modern semiconductor devices.

In the present work, the two-dimensional model of
thermal diffusion of arsenic in silicon is developed on the
basis of our researches [7-9]. In our model, the migration
of implanted arsenic is described in view of nonlinearity
of the process, influence of point defects, cluster
formation and migration of electrons. In contrast to the
known models of arsenic diffusion in silicon, we
consider that clusterization depends not only on a level of
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the impurity concentration, but also on concentration of
electrons. Such approach allows to model precisely
enough distribution of the impurity at a surface of
semiconductor crystal at low-energy implantation and
rapid thermal annealing.

For the numerical solution of the constructed
nonlinear systems of differential equations, the method
of final differences [10, 11] is used. We developed the
economic  locally-one-dimensional  schemes [11]
allowing to model the diffusion in two dimensions
quickly enough. Results of some numerical calculations,
in comparison with experimental data, are presented.

I. The model

We suggest that arsenic diffusion occurs due to the
formation, migration, and dissociation of the “As'D"”
pairs, where As" and D" are the substitutionally dissolved
arsenic atom and intrinsic point defect, respectively [12].
At a construction of the model of point defects evolution
we do certain simplifications. We assume that As
diffusion occurs substantially by the interstitial
mechanism, and diffusion by vacancies is less
significant. Therefore we consider only the equation
describing diffusion of point defects induced by transfer
of intrinsic interstitial atoms. We assume also that the
drift of intrinsic interstitial atoms and vacancies in the
field of internal elastic stress is negligible. A
thermodynamic approach based on the local equilibrium
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between the substitutionally dissolved arsenic, point
defects and the pairs leads to the following system of

diffusion equations:
lek 0 o ~. CCao
- —{D(x)(—(ccn——"D, (1)
0X, 0Xy % OX,

2

ot

Lo'C C ¢

___+_

Sox, 1717

where (1) is the equation of dopant atoms diffusion and
(2) is the equation of diffusion of point defects [9];

=0, (@)

c'=c+C*, C=Cc, D, =D} +D} +D?,
1 2 D!
DE(y) = +Bx+Box p=2 =1,
1+B, +B, - Dy
where C and C'¢ are the concentrations of

substitutionally dissolved arsenic atoms and dopant
atoms incorporated into clusters, respectively; D = D(y)
and D, are the effective and intrinsic diffusivities of
arsenic, respectively; D} D!, and D’ are the partial
diffusion coefficients due to interactions of the dopant
atoms with the neutral, singly, and doubly charged
defects, respectively; y is the concentration of electrons
normalized to the intrinsic carrier concentration n,; C*is
the concentration of point defects in the neutral charge
state; C; is the equilibrium concentration of neutral point

defects in the bulk of the semiconductor, I} is the average

migration length of point defects; Ctis the effective
generation rate of point defects normalized to the rate of
equilibrium thermal generation:

Ct =1+g(x,,x,)/g,
where g; is the total defect generation rate in different
charge states in an intrinsic semiconductor; the function

. x d x d
g(x1,xy) in the case of If >Ay“and If >ARjcan be

approached by the following analytical expression [13]:

~ G(x) X,+a | X,—a
g(x,x,) = 5 {erf(\/fAydj erf[—\/z ydﬂ'
Here
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where p? is the defect generation power at arsenic ion
implantation, Rﬁ is the position of maximum of

generated defects distribution, ARi is the depth

dispersion, Ay®is the lateral deviation of the generated

defects. The concentration of clustered arsenic atoms can
be obtained from the following expression [9]:

CAC — KCDX4C2 ,
where K is the characteristic parameter of clustering;
(~3Dis the normalized concentration of the defects
participating in the cluster formation. We used the
KéD value of 3.0x10'® um?® at a temperature of 950 °C.

The parameter value has been taken from [9]. To
calculate values of 7y, a condition of local charge

495

neutrality was used:
C—C —C% +,/(C-C* —CP)? +4n?
2n

€

x =n/n, = ,(3)

where C? is the summarized concentration of acceptors.
The simulation domain is considered as a flat cut of a

masked silicon substrate transversely to the surface

(Fig. 1): G={0<x,<1,,0<x, <l,}is a rectangle with

sides /; and /,, 4 is the border of simulation area: 4 = 4,
+ A, + A3z +A4, 2a 1s the width of not-masked surface.

mask

x, (um)

0.20

T T
0.6 0.8

x, (um)

0.0 0,‘2 0.‘4
Fig. 1. The simulation domain and the normalised two-
dimensional distribution of point defects.

For the Equation (1) on the boundary A4 let us
consider the following condition:
D(X)[ac_c+§a_x]=0,
on y On

where n is the normal vector to the simulation boundary.
The initial conditions are following

c' (Xl,Xz,t)L:O =Gy (x,,%,), (5)
where Coy(xy, x) is the distribution of the implanted

atoms.
Equation (2) is closed by the conditions:

d, =atx),

(4)

o —const <1,

B,

if0<x, <a,

where a(Xz)Z{ ifa<x, <1
2 =2

=0. (6)

i
0X, A

In case of a mask, for example, from silicon nitride,

B=0.

II. Numerical method

For the purpose of calculation acceleration, it is
possible to use domains of different size for As atoms
and point defects diffusion modelling. The values of /;
and /, for the solution of Eq. (2) should be large enough
to  guarantee  correctness of the  boundary

conditionséA =1 andéA =1. At the same time, the
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problem of the modelling of low-energy implanted
dopant is solved, as a rule, in much smaller area.
Therefore, it is enough to take the defects distribution
corresponding to the area of modelling of As diffusion
(Eq.(1)) with the purpose of reduction of the calculation
time.

Let us introduce a non-uniform time grid:

i
2{‘[0 =0,t, =2 1, j=12.00. T, >0}.

k=1

The calculation grid on spatial variables @, has the
following form:

:{ngl,il <1, 0<x,,i, <1, X,,=X,,=0,

X o T1;h

11>

i =LN;, Xy, =X, +ih,, 6, = LN}

L, —

For the effective solution of the Equation (1) we used
a locally-one-dimensional method [11]. Let us put a
chain of the one-dimensional equations in
correspondence with the Eq. (1):

6C(Tl) _a DL ) 6(CC(])) CC ) Oy

ot 0x, o 0x, Yoy 00X (7)
t, <t<t, (x,,x,)eq,
6C(Tz) 0 DO ) 6(CC(2)) CC ) Mz

ot ox,| " ox, Lo OX, 8)
t, <t<t, (x,x,)eqG.

The equations (7) and (8) are connected by the
conditions

C(l) ‘t:tj L C(z) t=t;, 1=2.3,.0]05
C(Z) t=t, = C(l) ‘t:tJ aj = 1929~'-5j0 s C;r]) CO (Xlaxz) .
The values of y, and ¥ are defined from (3);
Clay =Cm + Ko Cly Where K =KC,,.

Boundary conditions for the Equations (7) and (8)
are the following:
J ) 0’

aCc,) CC,, ox
D(X(l))[ @) + (€] @)

6)(1 X(l) 6x1 (9)
t, <t<t,(x,x,)eA,,v=13
a(CC CC,,, 0
D(X(z>) ( (2)) + @ A =0,
0%, Loy 0%, (10)
t <t<t]’(xla )EAv’V:2’4'

One-dimensional problems (7), (9) and (8), (10) are
solved along the lines x, = X ,1, =0,1,...,N, and the

lines x, = X, o1 =0,1,..,N, respectively.

According to the theory of a locally-one-dimensional
method [11], we assume that the functions C,,, and C;,,

are the approximate solution of the problem (1)—(6) at
the time momentt =t;, j=12,..., j,.

Let  YiusYoms Zamy ¥ »m=12, the

functions defined on the grid ®w=m, x®, and let they

are grid

correspond to the functions C(Tm) s Clay s Ay » C,m=12.
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The symbols introduced here for difference relations are
the same as in [11].

Using the integrointerpolation method [11], we will
construct the nonlinear difference Crank-Nicolson
schemes for the differential conditions (7)—(10).

For Eq. (7) on the grid o at i, =0,1,2,...,N, we

have the following difference equations:

T j 1 = = = !
(y(l)(z(l)’y(l)))T i :5((31(2(1))}’(1)i, +al (Z(l):}’(l))z(l)i1 )x,)v +

1 _ i 11

2((3 (Z(l))Y(lr +a (Z(l)’y(l))Z(I)X| )M ) 5 ( )
i =1L.,N -1, j=L2,...j,
where y(1)| yy(l)) , 1,=0,1..,N,.

Using the differential equation (7), on the boundary
A, we approximate the condition (9) by the following

relation:

- 1 _
0,5 h1 (Y(Tl) (Z(l)’ Y(l)))T |i:0 = E(al (Z(l))y(l)i1 +

(12)

+a,(Z1)> Y1) )Z1yx, )

- 1 _
iJI:l + E(al (Z(l))}’(l)iI +

— — -1 . .
+a, (Z(l)’y(l))z(l)il ) =10 JT 1,2,... Jo-

Similarly, on the boundary x, =1 relation

1 _
—0,5h (y(l)(zm,ym)) |1. -N, :E(al(zm)y(l)i. +

(13)

_ _ : 1 _
+2,(2)5 V) Zays, iy, +E(al (Z))Yays, +

— — -1 . .
+a, (Z(l)’y(l))z(])il ) =N 0 JT L,2,... ],

is obtained.
In Eq. (11)—(13) the grid functions a,(z,) and

a,(z),Y,,) are defined as follows:

(OK

a, (z(])):O,S( ( (])(xl SXi ))+D( (])(xil_l,xiz,tj))),

B 3 Y(l)( lz’tl)

Y )=0,5D ot
3 (Zm y(l)) (Z(”(X * J)) z(l)(xil,xiz,tj) :
+D(Z(1)(Xil—1’xiz’tj)) Z(])(Xi,—l’xiz’tj) ’
i,=L2,.,N, i,=0,1..,N,, j=0,1..,j,

Similarly, the differential equation (8) on the grid ®
at i, =0,1,...,N, is approximated by the difference
relations of the form
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(y;rz)(zu)’ }/(2)))Y |32 =
J +
a4

1 _ _ _
+5((az (20)Y oy, T 2:(20):Y0)) Zoys, )XZ ) _

l — — —
= E((az (2o, ¥ 02(202), Y 2)) Zays, )Xz )

>

L=1.,N, =1, j=12,.].
yY(Z))‘ b i2 :Oala'“aNZ'

For the boundary condltlon (10) on the boundary line
A, we construct the difference approximation

OsShz(y<Tz>(Z<2>’y(2>))$ |f

Here y(2)|

1 _
0 = _(az(Z(z))}’(zm2 +

J“'ﬂ‘z(zuwy(2>)z<z>xz)f2 += (a () ¥y, + (15)

+az(Z(2)aY(2))Z(2)x )| -1 J—l 2,5 0o
Similarly, for (x,,x,)€ A, we obtain the following

difference relations

, 1 _
-0,5h, (Y(Tz) (2(2) > Y ))T | iJz:N = E(az (Z(z) )Y(z)iz +

_ _ - 1 _
+a, (Z(Z)JY(Z))Z(Z)XZ) fZ:N2 +E(az (Z(z))Y(z)i2 + (16)

i=L2,.., -

+a, (Z(2)=§(2))Z(2)xz) f;N >
In the relations (14)—(16) the grid functions
a,(z,)) and a,(z,),y,,) are defined as follows:

az(z<2>):0’5( ( <2>(X' Xip» ))+D( (2)(Xiu’xiz-"ti)))’

z(z)(x xlz,tj) '
?(2)<Xi,axiz—l’tj)

+D( (2)( xirl,tj))—

Z(z) (Xil ’Xiz‘] ’tj )

i, =1,2,..N,, j=0,1,..j,

52(2(2)5(2)):0,5 D(Z(z)(x S Xy, ,tj))

i =0,1,..,N,,

Problems (11)—(13) and (14)—(16) are connected by
the following conditions

ymL:l :y<2>|t:t_,,,’ y<2>|1:1

= y(1)|t:tJ ’ y()

We complete the system of the difference relations
(11)—(13), (14)—(16) and (17) by algebraic nonlinear

equations
1 S 4 2
Zim) ~ on. (y(m) Kz Yim =Co +
(17)
2 2] i

+\/(y<m) Kz(m)y(m) CB) +4ne) |i,,i2 =0,

where
m=12 j=0lL.j; i,=0L..N; i,=0,1,..,N

We construct the initial conditions for the difference
problem (11)—(13) using the relations (3) and (5):
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o =Cy(X,,X,).

o4 2
Yay +KZ(|)Y(|) = Co‘” -

(18)

1 ~ N 2
075, {y“ KZZ)Y&FCu*\/(Yu KZ(l)ym Cu) +4n§j

i, =0,L..,N

Approximate solution of the algebraic equations
system (18) is obtained by the method of interval
bisection.

On the grid o, the equation (2) is approximated by

where i, =0,1,..,,N,,

the following system of the difference relations:

2 v Ce
(Zy Xy Xy 312 + 1><2 j

i

=0,

i

(19)

,=12,.,N, -1 i,=12,.,N,-1.

The difference equations (19) jointly with the
corresponding boundary conditions are solved by the
block-Thomas algorithm [14].

The difference relations (11)—(19) are the closed
system of the nonlinear algebraic equations for
every j=1,2,...,j,. We find the solution of this system

using the same iterative processes.
For the nonlinear equation (11) at i, =0,1,...,N, we

construct the following iterative process
j

s s s s s+1 s
[Y(Tn (Zm Yo j + (1 +2Y4) Yoy j( Yo~=Yu )j

‘[jj s ~ s+l _ s s s
+? a4 (Z(l})y Y(l)il"'a(])(z(l)’Y(l))Zm;,
X

j-1

=Y (Zu) y(l))

i
1

+

+ (20)

iy

-1

T.
; _ _
+2[(al(z(1>)y(1>xl +a(1>(z(1>’y<1))z<1>ilj ]
Xl
54

Here v, =Kz, ¥, =YYus
i,=12,.,N,-1; s=0,12,....

For the boundary conditions (12) and (13) we have,

respectively
j

s s s s s+1 s
& [Y(Tn (Z(l) Yay j + (1 +2Y0) Yoy J( Yoy~ Ya )]
=& Yo [Zmy(l)j

i1 1 s+l s J
52 (Zm)y Yox ta (Zuhym)Z(l)x] +
i =1

i,=0

1=0

R -
2 (a (zn)y Yog, + a,(zw, Y(l))z(l)ﬂ ) >
i=1

1

s s s s s+l s
&Jj (Y(Tn (Z(l) Y(l)j+ (1 + 2Y(l) Y(I)J( Yo~ Y(I)JJ
i1
==&y, (Z(l)y(l))

N -
[a (Zm) Yy, + 2 (Z<|),y(l))z(|>;,j ,
2 N,

j

=N,

1 N
++= 5 (a (Z(l))y y(l)* +4, (Z(l),yU))Z(l)ix j +
N

=N, i=N,

(22)

where§; =0.5h, /1;, s=0,1,2,....

The solution of the problem (20)—(22) is obtained by
the Thomas algorithm [11]. By analogy with the relations
(20)—(22) we construct the iterative procedures for the
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solution of the nonlinear equations (14)—(16). For the
equation (17) we obtain the following iterative relation
1

Z(m——X
2n

s+l

e

J

s+1 sH4 512 s+l s+14 5412 2 5
Y(m)_K Z (m) ym)—CB + y(m)—K Z (m) ym)—CB -*—411C :0,
m=12, j=0,1,...j, i,=0,1,..,N,, i,=0,1..,N,, s=0,1,2,..
The values of the grid functions

s+1
Zm,m=12,s=0,1,2,..., on the grid ® taking into
s+1

account y . is calculated by the method of interval

bisection.
The iterations are stopped when
s+l s s .
Y it ™ Yon | SV s [r 1= 0L Ny
i,=0,1,...,N,, s=L2,..,

where ¢ is empirical parameter.
We assume that the numerical solution y, is an

approximate solution of the problem (1)—(6) at every
time layer.

Control of the calculations is realized by the testing
of the condition

J‘J.y(Tz) (Xl,xz,tj)dxldx2 = ”Co(xl,xz)dxldxz R
G G

=12,

4 2

y

T o_
where Y., =Yo +sz o

II1. Results of simulation

We simulated the experiment described in [5]: 10"
em? 15 keV As’ ions were implanted at room
temperature into Si wafers with (100) orientation and p-
type resistivity of 2.5-52 Q-cm. After the ion
implantation, the wafers were annealed in a tungsten-
halogen lamp system in nitrogen ambient at a
temperature of 950 °C for 10 s. The arsenic concentration
profile after annealing was measured by ToF-SIMS. The
concentration scale for As has been determined using
known calibration standard implantations in Si (absolute
error 10%), and the depth scale has been determined
using ex situ interference microscopy (absolute error
< 5%), assuming a constant erosion rate [5].

For the calculation of point defects distribution we
used the following values: ¢ = 0,5 um, a= 0,175, B = 0,

I'=0,05 pm, /; = 0,4 um, , = 5 pm. In Fig. 1, the

calculated values of the point defects distribution C are
presented.

For the simulation of As diffusion we used the
following parameters: /; = 0,2 pm, ,, = 1 um, B; = 0,436;
B, = 0,0 K= 3,0x10" um’. In Fig.2, the two-
dimensional profile of As distribution C” as a result of
rapid thermal annealing is presented. In Fig. 3, results of
simulation at x, = 0 are compared with the experimental
data [5].
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The calculated profile of the total As concentration
agrees well with the experimental data, including the
near surface region (Figs. 2, 3). Therefore, the presented
model allows simulation of high concentration transient
enhanced diffusion of As implanted in Si. The transport
process differs substantially from the processes described
by the Fick's second law. In our opinion, the non-uniform
distribution of point defects plays the main role in the
“uphill” diffusion of arsenic atoms near the surface of the
semiconductor and formation of local maximum of the
dopant concentration. It follows from Eq. (1) that
nonuniform distribution of silicon interstitial atoms in the
neutral charge state causes the additional flux of impurity
atoms, which leads to the “uphill” diffusion. We suppose
that radiation induced segregation or matrix effects
during SIMS analysis are negligible, because apparent
“uphill” diffusion is not observed for the as-implanted As
profiles also measured by SIMS.

4 sy,
Fig. 2. Simulated two-dimensional As distribution after
annealing.
1010
10° ——2
~~ —0—3
o g
8 —0—0—0
20 =5
1359
O
107
Q
10° . T .
0.00 0.02 0.04 0.06
x, (um)

Fig. 3. Simulated As profile before (/) and after
annealing (3) compared to experimental profile (2) from

[5].

Conclusion

The two-dimensional model of thermal diffusion of
arsenic in silicon was developed. We applied the
effective difference method of the solving of the
constructed system of the differential equations. The
offered nonlinear model considers interaction of high
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concentration of impurity, point defects and electrons.
The model can be used for in modern integrated circuits
manufacturing technology for the simulation of rapid
thermal annealing. The model predicts the effect of
“uphill” diffusion of the implanted arsenic in surface
areas of silicon crystal. The simulation results are in a
reasonable agreement with experimental data, including
the presence of local maximum of the arsenic atoms near
the surface.
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’Inemumym Mamemamuxu, Binopycka Axademis Hayx, éyn. Cypeanosa, 11,
Mincwx, 220072, binopycs, E-mail:vtsurko@im.bas-net.by
35i/10pbeKuﬁ depoicasHuil yrigepcumem ingopmamuku u padioenekmponixu, eyn. 11. bpoexa, Mincek, 220013,
bBinopyce, E-mai:l oleg velichko@lycos.com

IlpencraBnena OBOMipHa Mojens TemnoBol audysii. Jlana monens Oyiia 3ampoOIOHOBaHA 3 BpaxyBaHHIM
HemiHidHOCTI mporecy, (OpMyBaHHS KJIAacTepiB Ta BIUIMBY TOukoBUX aedexTiB. st po3paxyHKy mpodinio
JIOMIILIIKOBOTO PO3MOiIy 3a MIBUIKOrO TEPMIYHOTO Biamaiay OyB BHKOPHCTaHHH e(QEKTHBHHN YHCIOBUH aIropuTM
OCHOBAaHUI Ha METOMI KiHIIEBOI pi3HHII. Pe3ynbTatu TEOpEeTHYHUX pPO3pPaxXyHKIB OJM3BKI J0 €KCIEPHUMEHTAIbHUX
JIaHMX.
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