УДК 681.7.015.2;621.315.592;539.234

ISSN 1729-4428

М.Л. Ковальчук¹, З.І. Захарук¹, Г.І. Раренко¹, Є.В. Рибак¹, Є.М Косенков¹, Е.Б. Тальянський²

Перенастроювані оптичні фільтри і спектрометричні елементи на основі варизонних структур CdHgTe, CdMnHgTe

¹ Чернівецький національний університет ім. Юрія Федьковича, вул. Коцюбинського, 2, м. Чернівці, 58012, Україна, E-mail: <u>microel@chnu.cv.ua</u> ²Stardust Technology, Inc. R&D Dept, 4278 Arthur Kill Rd, Staten Island, NY, USA

В даній роботі приведені розрахунки і експериментальні спектральні залежності оптичної густини вирощених варизонних структур (B3C) Cd_xHg_{1-x}Te та Cd_xMn_yHg_{1-x-y}Te від їх композиційного складу і його розподілу по товщині. Представлені розрахунки і конструкція перенастроюваних оптичних фільтрів і спектрометричних елементів на основі цих B3C для IЧ-області спектру λ=1÷6 мкм. Ключові слова: варизонні структури, оптична густина, спектрометричні елементи.

Стаття поступила до редакції 07.11.2005; прийнята до друку 15.11.2005.

Вступ

В ІЧ-фотоелектроніці оптиці широко та кристали застосовуються плівки та напівпровідникових твердих розчинів Cd_xHg_{1-x}Te та Cd_xMn_yHg_{1-x-y}Te з фіксованим значеннями х та у [1]. Використовуються також їх епітаксійні плівкові варизонні структури (ВЗС). В них хімічний склад і фізичні властивості змінюються в напрямку перпендикулярному до їх поверхні (координата Z). На ВЗС створюються широкополосні фотоприймачі, оптичні фільтри, сонячні елементи [2, 3]. Фізичні властивості, зокрема, ширина забороненої зони Е_д в ВЗС залежить від розподілу компонентів по їх товщині. В нашій роботі досліджено оптичні властивості і варіанти приладних структур ВЗС компонентного складу $Cd_xHg_{1-x}Te$ та $Cd_xMn_vHg_{1-x-v}Te$. ВЗС формувались на монокристалічних підкладках відповідно CdTe і CdMnTe при використанні в якості джерела випаровування кристалів HgTe. Найчастіше B3C вирощуються методом "випаровуванняконденсація-дифузія" (ВКД), де під час їх росту джерело і підкладка знаходяться у вакуумованій ампулі при однаковій температурі [4]. В нашому випадку - НgTe випаровується і конденсується на підкладках СdTe чи СdMnTe. Після цього проходить дифузія ртуті з конденсату в підкладку, одночасно Cd чи Cd i Mn – з підкладки в конденсат. При ізотермічному ВКД композиційний профіль i відповідно Е_д змінюються експоненційно 3 товщиною ВЗС. Для керування цим профілем ми здійснювали вирощування при різних температурах підкладки і джерела, під керованим тиском парів ртуті, з використанням ВЗС різного складу в якості джерел випаровування [5].

I. Розрахунки та дослідження оптичних параметрів ВЗС

В силу природи ВЗС не можуть характеризуватись визначеним коефіцієнтом поглинання. Відповідною інтегральною характеристикою поглинання світла може служити оптична густина D:

$$D = \int_{0}^{l_0} \alpha(h\nu, l) dl, \qquad (1)$$

де $\alpha(hv, l)$ – локальний коефіцієнт поглинання в точці l=Z структури. При цьому вважається, що цей коефіцієнт в точці l, де склад розчину x, рівний коефіцієнту поглинання однорідного зразка того ж складу x при тих же енергіях фотонів.

Розглянемо оптичну густину ВЗС у найбільш простому випадку лінійної зміни ширини забороненої зони E_g(1) ~ 1.

Такі структури вирощуються при керуванні тиском парів Hg в методі ВКД [5]. Для прямозонних напівпровідникових твердих розчинів з ростом енергії фотонів hv коефіцієнт поглинання α(hv) зростає спочатку експоненціально в відповідності з правилом Урбаха, а тоді по закону

α²~(hv - E_g) (2) Тому, локальний коефіцієнт поглиняння можна записати у вигляді:

$$\alpha = \begin{cases} \alpha_{o} e^{S(h\nu - E_{g})} & \text{при} \quad h\nu \leq E_{g} \\ \chi(h\nu - E_{g})^{1/2} + \alpha_{o} & \text{при} \quad h\nu \geq E_{g} \end{cases}, \quad (3)$$

де S- параметр Урбаха, який характеризує нахил лінійної ділянки залежності lnD від енергії фотонів hv і може служити показником структурної досконалості B3C. α_0 , і χ – параметри, які не залежать від hv і E_g.

Якщо прийняти в першому наближенні, що композиційний профіль структури є лінійний $E_g(l) \sim l$, то після підстановки (3) в (1) та інтегрування одержимо:

в області енергій фотонів $h\nu \leq E_{g,min}$ при $\Delta E_g = const$:

$$D = \frac{\alpha_o l_o}{S\Delta E_g} e^{S(hv - E_{g,min})}, \qquad (4)$$

в області $E_{g,min} \le h\nu \le E_{g,max}$:

$$D = \frac{\alpha_o l_o}{S\Delta E_g} \times$$

$$\times \left\{ S(h\nu - E_{g, \min}) \left[\frac{2}{3} \frac{\chi}{\alpha_o} (h\nu - E_{g, \min})^{1/2} + 1 \right] + 1 \right\}$$
 (5)

Тут $\Delta E_g = E_{g,max} - E_{g,min}$. Вважається, що χ , α_0 і S не залежать від складів x та y.

При hv =
$$E_{g,min}$$
, оптична густина
шару $D(hv - E_g) = \frac{\alpha_0 l_0}{S\Delta E_g}$, що в (S ΔE_g) разів менше,

ніж у однорідного зразка тієї ж товщини l₀, в якому $E_g = E_{g,min}$. У випадку $Cd_xHg_{1-x}Te$ (x = 0,2), $Cd_xMn_yHg_{1-x-y}Te$ (x + y = 0,35) величина $S\Delta E_g \approx 10^2$ [6]. Отже, визначення оптичної ширини забороненої зони $E_{g,min}$ по краю поглинання, тобто по графіку T(hv), як це робиться для однорідних зразків, у випадку варизонних структур неправомірно.

При певних технологічних умовах розподіл компонентів в ВЗС може бути лінійним [5]. Але частіше ВЗС $Cd_xHg_{1-x}Te$ та $Cd_xMn_yHg_{1-x-y}Te$ вирощувані методом ВКД в ізотермічних умовах мають композиційний профіль близький до експоненційного. Тому профіль (3) і формулу (5) слід вважати наближеними.

Розглянемо оптичне поглинання ВЗС, де залежність $E_g(l)$ близька до експоненційної $E_g \sim exp\left(-\beta \frac{l}{l_0}\right)$. Замінимо для спрощення

розрахунку $\alpha \sim (hv-E_g)^{1/2}$ на $\alpha = \chi(hv-E_g) + \alpha_o$. В цьому випадку після підстановки (3) в (1) та інтегрування одержимо:

в області $h\nu \leq E_{g,min}$:

$$D = \frac{\alpha_o l_o}{\beta S \Delta E_g} e^{S(hv - E_{g,min})}, \qquad (6)$$

в області $E_{g,min} \le h\nu \le E_{g,max}$:

$$D = \frac{\alpha_0 l_o}{\beta} \left[\left(1 + \frac{\chi}{\alpha_o} q \right) \ln \frac{q}{\delta} - \frac{\chi}{\alpha_o} (q - \delta) + \left(1 + Sq \right) \ln \left(1 + \frac{1}{Sq} \right),$$
(7)

де q = hv - $E_{g,min} + \delta$, $\delta = \Delta E_{g,max} - \Delta E_{g,min}/(e^{\beta} - 1)$. Поскільки звичайно $\beta > 3$, то $\delta \approx \Delta E_g \cdot e^{-\beta}$ – мала величина.

Для визначення величини оптичної густини ВЗС проводили вимірювання спектральної залежності коефіцієнтів пропускання $T(\lambda)$ B3C Cd_xHg_{1-x}Te i Cd_xMn_yHg_{1-x-y}Te на інфрачервоному спектрометрі. Роздільна здатність приладу на довжині хвилі $\Delta\lambda/\lambda$ – не гірша 0,5 %, точність вимірювання пропускання була $\Delta T \approx 0.02$. За допомогою експериментально одержаних величин Т, α та 1 була обчислена оптична густина ВЗС, вирощених в різних технологічних умовах (таблиця 1, рис. 1). Зміщення кривих D(hv) в область більших значень hv відбувається за рахунок змін товщини ВЗС і композиційного профілю (рис. 1, криві 1-5). Для зразків, які мають близький склад на поверхні і близькі значення товщини ВЗС, але відрізняються композиційним профілем ми одержуємо різні значення оптичної густини D (рис. 1, криві 3, 4).

Таблиця 1

Умови вирощування, товщина l та склад x поверхні ВЗС $Cd_xHg_{1-x}Te$.

N⁰	Склад поверхні, <i>х</i>	Товщина ВЗС, <i>l</i> ₀ (мкм)	Метод вирощування
1	0,35	10	Ізотермічний ВКД (джерело – ВЗС з іншим значенням х(<i>l</i>))
2	0,32	22	ВКД (температура підкладки більша ніж температура плівки)
3	0,30	25	ВКД в присутності парів С <i>І</i>
4	0,29	32	Ізотермічне ВКД
5	0,28	65	ВКД при керуванні тиском ртуті

В деяких випадках в B3C Cd_xMn_yHg_{1-x-y}Te p-типу провідності спостерігалось погіршення пропускання випромінювання. Особливо це проявлялось на вирощуваних ВЗС при високих температурах T ≥ 590°С. Такі умови підвищують ймовірність ртуті (акцепторів), утворення вакансій які викликають додаткове поглинання. Збільшення оптичної густини невідпалених ВЗС такого типу в області прозорості при 300°С описується законом $D = f(\lambda^{r})$, що характерно для поглинання вільними носіями заряду (рис. 2, крива 3). В B₃C Cd_xMn_yHg_{1-x-y}Mn_yTe (рис. 2, крива 1), пропускання випромінювання мало характер $T \sim \lambda^r$, де $r = 0.85 \div 1.1$. Стехіометричним відпалом в рівноважних парах ртуті при 200°С (т = 100 год) вдавалось значно понизити цей вид поглинання (рис. 2, крива 2).

Рис. 1. Спектральні залежності оптичної густини ВЗС Cd_xHg_{1-x}Te. Нумерація кривих відповідає номерам ВЗС в Таблиці 1.

Рис. 2. Спектральна характеристика B3C Cd_xMn_yHg₁. _{x-y}Te (склад поверхні: x=0,25, y=0,10): 1,2 – пропускання випромінювання до і після відпалу; 3 – оптична густина до відпалу.

II. Перенастроювані оптичні фільтри і спектрометргічні елементи на основі ВЗС

Варизонність вирощених нами шарів використана при конструюванні різноманітних оптичних приладів. В якості таких пропонуються перенастроювані оптичні фільтри і спектрометричні елементи, виготовлені на базі ВЗС $Cd_xHg_{1-x}Te$, $Cd_xMn_yHg_{1-x-y}Te$.

Під кутом 0,5 градуса до поверхні ВЗС, по всій її товщині (координата Z) робився косий зріз (шліф) довжиною 10 ÷ 15 мм вздовж координати Y. На його поверхню проступав послідовно весь композиційний

профіль структури. Оскільки спектральне положення "краю поглинання" визначається в першу чергу мінімальною шириною забороненої зони по ходу променя, то така структура представляє собою плавно-перенастроюваний відрізаючий оптичний фільтр. Перенастройка фільтра виконується шляхом поступального переміщення променя-зонда, перпендикулярного поверхні фільтра, в напрямі У, що співпадає зі зміною ширини забороненої зони на поверхні структури. На рис. З показана залежність положення краю поглинання такого фільтра від його зміщення відносно променевого пучка. Розрізнення в зондуючого променя шкалі довжин хвиль покращується з довжиною хвилі. Цей ефект пов'язаний з видом композиційного профілю варизонного шару.

Рис. 3. Положення краю поглинання перенастроюваного фільтру в залежності від його зміщення відносно променевого пучка на ВЗС $Cd_xMn_vHg_{1-x-v}Te.$

В області глибокого однофотонного поглинання згідно правила Урбаха коефіцієнт поглинання для $h\nu \leq \Delta E_g$ має вигляд (3). У випалку спектрометричного елемента, коли опромінення здійснюється послідовно у певних точках косого B3C, при умові $dE_g/dz = const,$ шліфа ле $\nabla_z E_{g,y} = (E_{g,y,max} - E_{gy,min})/l_0, \quad \text{de} \quad E_{g,y,min} = E_g(Z = l_0), \quad a$ $E_{g,y,max} = E_g(Z = 0)$. Оптична густина (4) набуде вигляду

$$D \approx \frac{\alpha_0}{S\nabla_z E_g} e^{S(hv - E_{\Phi}(y))}, \qquad (8)$$

де E_Ф(у) – ширина забороненої зони на поверхні шару в точці падіння променя.

Локальний коефіцієнт пропускання фільтра тоді можна записати наступним чином:

$$T(h\nu) = (1 - R) \exp\left\{-\frac{\alpha_0}{S\nabla_z E_g} e^{S(h\nu - E_{\phi})}\right\} \text{ при}$$

hv $\leq E_{\phi},$ (9)

де R- коефіцієнт відбивання поверхні ВЗС.

В поліхроматичному випромінюванні потік, що пройшов через фільтр, буде пропорційний T(hv). Крутизна краю поглинання буде високою в тому випадку, якщо $\nabla_z E_g \le 0.3\alpha_0/S$, тобто шар повинен бути порівняно товстим.

Розглянемо тепер спектрометричний елемент на базі ВЗС. На поверхні шару при наявності градієнтів $\nabla_z E_g$ і $\nabla_y E_g$, як це було описано по відношенню до варизонного перенастроюваного фільтра, формується контактний бар'єр метал-напівпровідник. Світловий потік, що досягає області об'ємного заряду, генерує фотострум, густина якого, без врахування рекомбінації в шарі об'ємного заряду, має вигляд :

$$I(hv) = e \left[q_p + \int_{W} G(z, hv) dz \right], \qquad (10)$$

де q_p – потік нерівноважних дірок, W – ширина об'ємного заряду, G – функція генерації.

Спектральна характеристика такого елемента визначається точкою падіння променя і мінімальною шириною забороненої зони Е_{g,min} в цій точці.

Метод ізотермічного росту [4, 5] дозволяє створювати одночасно з обох сторін підкладки ідентичні варизонні структури. Це дає можливість сумістити на одному кристалі два прилади перенастроюваний оптичний фільтр і спектрометричний елемент.

При умові, що дифузійна довжина носіїв заряду L⁺<<Y₀, спектральна характеристика такого елемента має вигляд:

$$I(h\nu) = \begin{cases} A\Phi_0 \exp[S(h\nu - E_{g,min})] & \text{при} \quad h\nu \le E_{\Phi} \\ A\Phi_0 \exp\left[-\frac{h\nu - E_{g,min}}{L_p^+ \nabla_z E_g} - \frac{\alpha_0}{S\nabla_z E_g} e^{S(h\nu - E_{\Phi})}\right] & \text{при} \quad E_{g,min} \le h\nu \le E_{\Phi} \end{cases},$$
(11)

де A=const(hv), Φ_0 – падаючий поліхроматичний потік, E_{g,min} – мінімальне значення E_g на початковій поверхні ВЗС. Якщо виконати конструкцію елемента таким чином (що технічно можливо) щоб мінімальна різниця [E_Φ(y) - E_{g,min}(y)] забезпечувала максимум спектральної характеристики близький до I_{max} = A Φ_0 , то реалізується селективна фоточутливість такої структури. Переміщуючи елемент відносно нормально падаючого променя, можна досліджувати його спектр. Вимоги до фоточутливого варизонного шару в конструкції елемента, що містить варизонний

фільтр, суттєво нижчі, ніж в звичайних конструкціях, де необхідною умовою є наявність товстого варизонного шару: $L^+ \ll l_0$.

Розглянемо елемент з варизонним фільтром, в якому ця умова не виконується, і, більш того, $L^+ >> l_0$. Якщо для простоти прийняти, що при $hv \ge E_g$, $\alpha = \alpha_0 + b(hv - E_g)$, де α_0 , b – постійні величини, то спектральна характеристика фотовідповіді може бути представлена у вигляді:

$$I(h\nu) = \begin{cases} A\Phi_0 \left\{ 1 - \exp\left[-\frac{\alpha_0}{\nabla_z E_g} (h\nu - E_{g,min}) \right] \right\} & \text{при} & E_{g,min} \le h\nu \le E_{\Phi} \\ A\Phi_0 \exp\left\{ -\frac{\alpha_0}{\nabla_z E_g} \left(h\nu - E_{\Phi} + \frac{b}{2\alpha_0} (h\nu - E_{\Phi})^2 \right) \right\} & \text{при} & h\nu \ge E_{\Phi} \end{cases}$$
(12)

Відомо [2, 6], що при виконанні умови $L^++W < l_0$ спектральна характеристика фото-ЕРС поверхневобар'єрної структури буде селективною, а у випадку $L^++W > l_0$ – широкосмуговою.

Максимум спектральної характеристики І_{max}≈АФ₀ може бути забезпечений при дотриманні селективності, що відповідає умові:

$$\Delta Z \approx 3 \frac{\nabla_z E_g}{\nabla_y E_g} \frac{1}{\alpha_0}$$
(13)

Таким чином, в спектрометричних елементах на базі тонких варизонних структур реалізується

селективна фоточутливість з максимумом поблизу енергій фотонів (hv)_{max} ≈ E_Φ. З просуванням променя до вузькозонної частини елемента фото-EPC помітно знижується внаслідок зменшення висоти бар'єру, тоді як напівширина селективної спектральної характеристики зростає в зв'язку з зменшенням коефіцієнта поглинання і збільшенням дифузійнодрейфової довжини.

Конструкція спектрометричного елемента на основі двохсторонньої ВЗС Cd_xMn_yHg_{1-x-y}Te на підкладці CdMnTe подана на рис. 4.

Рис. 4. Конструкція спектрометричного елемента на основі двох B3C Cd_xHg_{1-x}Te вирощених на одній підкладці.

1 – фільтруюча ВЗС, 2 – фотоприймальна ВЗС, 3 – випрямляючий контакт, 4 – омічний контакт,

5 – підкладка з телуриду кадмію.

На рис. 5 показані залежності в реальних спектрометричних елементах на базі шарів ВЗС Cd_xHg_{1-x} Те положення максимума фотовідповіді та її відносної величини від координати променевого зонда на поверхні цього фотоелемента.

Рис. 5. Розташування спектрального максимума фотовідповіді і її відносна величина в залежності від зміщення світлового зонда по поверхні спектрометричного елементу.

- [1] A. Rogalski. Infrared detectors: Overseas Publishes Association (2000).
- [2] А.Р. Ананьева, А.В. Беркелиев, Ю.А. Гольдберг, Б.В. Царенков. Полосовые варизонные поверхностнобарьерные фотоприемникик // ФТП, 14(2), сс. 356-359 (1980).
- [3] O.A. Bodnaruk, A.V. Marcov, S.E. Ostapov, A.I. Rarenko, V.M. Godovanyuk. Shottky diode on base of the solid solution Cd_xMn_yHg_{1-x-y}Te // SPIE, 3890, pp. 111-116 (1999).
- [4] F. Bailly, G. Cohen-Solal, I. Marfaing. Preparation et control de structures a largeur de bande interdite variable // *CR Acad. Sc. Paris*, **257**, pp. 103-108 (1963).
- [5] V.S. Antonov, O.N. Janikay, A.I. Rarenko, S.L. Koroluk, E.D. Talyanskiy, Z.I. Zakharuk. Dependence of compositional profile and structural perfection of Cd_xHg_{1-x}Te films // SPIE, 3890, pp. 523-527 (1999).
- [6] Э.Б. Тальянский, Я.И. Кушнир, А.Ф. Слонецкий, И.М. Раренко. Электрофизические свойства тонких варизонных структур Cd_xHg_{1-x}Te // УФЖ, **23**(5), сс. 833-837 (1978).

Висновки

Вирощені епітаксйні варизонні структури (ВЗС) Сd_xMn_vHg_{1-x-v}Te на підкладках Cd_xHg_{1-x}Te, 3 монокристалів CdTe і CdMnTe видозміненим «випаровування-конденсація-дифузія» методом (ВКД). В якості джерела для випаровування використано кристали HgTe. Показано, що можна спрямовано керувати розподілом компонентів по товщині ВЗС при незалежній зміні температури джерела і підкладки, при керуванні тиском парів ртуті. В силу змінного складу варизонні структури не характеризуватись одним визначеним можуть оптичним коефіцієнтом поглинання. Тому для характеристики проходження випромінювання через такі структури, доцільно застосовувати оптичну густину. Остання була порахована в загальному для різних композиційних профілів в вигляді структурах i заміряна для $Cd_{x}Hg_{1-x}Te$, Cd_xMn_yHg_{1-x-y}Te B3C. Обраховані і створені на їх основі перенастроювані довгохвильові ІЧ-фільтри та спектрометричні елементи на діапазон $\lambda = 1 \div 6$ мкм.

Захарук З.І. – старший науковий співробітник; Ковальчук М.Л. – аспірант; Косенков Є.М. – старший науковий співробітник; Раренко Г.І. – канд. фіз.-мат. наук, старший науковий співробітник; Рибак Є.В. – науковий співробітник; Тальянський Е.Б. – науковий співробітник. M.L. Koval'chuk¹, Z.I. Zakharuk¹, A.I.Rarenko¹, Ye.V. Rybak¹, Ye.M. Kosenkov¹, E.B. Tal'yanski²

Tunable optical filters and spectrometric elements based on CdHgTe and CdMnHgTe graded band-gap structures structures

¹ 'Yuriy Fedkovich' Chernivtsi National University, 2, Kotsyubynskiy Str., Chernivtsi, 58012,Ukraine, E-mail: <u>microel@chnu.cv.ua</u>
²Stardust Technology, Inc. R&D Dept., 4278 Arthur Kill Rd., Staten Island, NY, USA

The present paper deals with calculations and experimental dependencies of $Cd_{1-x}Hg_xTe$ and $Cd_{1-x-y}Mn_yHg_xTe$ grown graded band-gap structures (GBS) on their chemical composition and its distribution along thickness. Calculations and construction of tunable optical filters and spectrometric elements based on these GBS for $\lambda=1\div6$ µm IR-region are represented.