УДК 539.2.01

ISSN 1729-4428

Л.Г. Ільченко, В.В. Лобанов, О.О. Чуйко

Формування потенціального бар'єру між двома близько розділеними металами з субмоношаровим адсорбційним покриттям

Інститут хімії поверхні НАН України, вул. Генерала Наумова 17, Київ, 03164, Україна E-mail: <u>vai@rpd.univ.kiev.ua</u>, тел. (044) 424 94 72

В даній роботі в межах нелокальної електростатики теоретично розраховано зарядову $\Delta V_{\sigma}(x)$ та структурну компоненти $\Delta V_{st}(\vec{r})$ повного потенціалу взаємодії між близько розділеними вакуумним проміжком металами. Структурний потенціал $\Delta V_{st}(\vec{r})$ обумовлений мікроскопічною (атомною) структурою поверхонь металів з впорядкованим субмоношаровим адсорбційним покриттям.

Показано, що для малих розділяючих відстаней $L \sim 0, 3 - 2 \, н M$ врахування структурної компоненти $\Delta V_{st}(\vec{r})$ сумарного потенціалу зумовлює латеральну зміну висоти потенціального бар'єру у всьому розділяючому вакуумному проміжку

Ключові слова: нелокальна електростатика, структурний потенціал, потенціальний бар'єр, субмоношарове адсорбційне покриття, впорядковані гратки.

Стаття поступила до редакції 11.05.2005; прийнята до друку 30.05.2005.

Вступ

Для розуміння природи взаємодії між двома металами, напівпровідниками чи діелектриками в зовнішньому середовищі необхідне детальне визначення розподілу потенціалу в розділяючому проміжку, який би враховував різницю в об'ємних властивостях взаємодіючих твердотільних частинок і зовнішнього середовища (потенціал сил зображення), зарядовий стан кожної з двох поверхонь, а також мікроскопічну структуру поверхневих шарів.

Потенціальний бар'єр між двома близько розділеними металами (напівпровідниками чи діелектриками) в повітрі (вакуумі) визначається розподілом потенціалу сил зображення $V_j^0(x)$ (j = 1, 2, 3) для системи метал - вакуумний проміжок - метал (MBM) [1], а його подальша зміна обумовлена коректним врахуванням зарядового стану поверхонь, мікроскопічною структурою, наявністю адсорбційних покриттів та зовнішніх електричних полів [2-6].

Проведені в межах нелокальної електростатики згідно роботи [1] розрахунки розподілу потенціалу сил зображення $V_j^0(x)$ в симетричній системі MBM з товщинами вакуумної щілини $L = 0, 4 \ \text{нм}$, $L = 0, 6 \ \text{нм}$ та $L = 0, 8 \ \text{нм}$ між двома ідентичними металами

приведено на рис.1 суцільними кривими. Ефекти просторової дисперсії в функціях діелектричної проникності металів $\varepsilon_1(\vec{k}) = \varepsilon_3(\vec{k}) = \varepsilon_0(\vec{k})$ були враховані в моделі Томаса-Фермі [1] з використанням наступних параметрів: робота виходу металів $\varphi_0 = 4,6$ еВ, концентрація $n_0 = 3 \cdot 10^{22}$ сm⁻³ та ефективна маса $m = 0,7369m_0$ електронів провідності в металах, де m_0 – маса вільного електрона. Відповідні штрихові криві на рис.1 показують розподіл потенціалу сил зображення у випадку класичних металів.

З наведеного малюнку бачимо, що потенціал сил зображення $V_2^0(x) = V_0(x)$ між двома металами, які розділені малим вакуумним проміжком $L \sim 0, 3 - 2$ нм, розрахований в рамках нелокальної електростатики, є неперервним на межах розподілу і має форму потенціального бар'єру, висота якого збільшується зі збільшенням розділяючої відстані L [1].

Наявність густини заряду σ_1 на першій та σ_2 на другій поверхнях металів буде суттєво змінювати форму потенціального бар'єру для всіх розділяючих їх відстаней L.

Рис. 1. Потенціал сил зображення $V_j^0(x)$ для симетричної системи двох однакових металів при $\phi_0 = 4,6 \text{ eV}$, $n_0 = 3 \cdot 10^{22} \text{ cm}^{-3}$ та $m = 0,7369 \text{ m}_0$, порахований для різних товщин L =0,4 нм, L =0,6 нм та L =0,8 нм вакуумного проміжку. Відповідними штриховими кривими показано розподіл потенціалу сил зображення $V_2^0(x)$ в вакуумній щілині у випадку класичних металів.

I. Теорія

Визначимо розподіл сумарного потенціального бар'єру $V(\vec{r})$, що сформований між двома близько розташованими металами з впорядкованими гратками субмоношарових адсобційних покриттів поверхонь металів, використовуючи метод функцій Гріна нелокального рівняння Пуассона з врахуванням ефектів просторової дисперсії в функціях діелектричної проникності металів [1,3-7].

Розглянемо проблему взаємодії точкового заряду е, що знаходиться в вакуумному проміжку $0 \le x \le L$, з двома напівобмеженими металами з діелектричною функцією $\varepsilon_1(\vec{k})$ та з поверхневою густиною заряду $\sigma_1(y,z)$ на першому металі в області $x \le 0$ та з діелектричною функцією $\varepsilon_3(\vec{k})$ та $\sigma_2(y,z)$ на другому в області $x \ge L$. Досліджувана трьохшарувата структура приведена на рис.2.

Вирішення цієї задачі може бути знайдено в рамках нелокальної електростатики. Врахуємо зарядовий стан та мікроскопічну структуру металевих поверхонь, вважаючи, що поверхнева густина заряду σ_1 на першій ($x \le 0$) та σ_2 на другій $(x \ge L)$ поверхнях металів сформована впорядкованими гратками адсорбованих іонів (для спрощення розрахунків в даній роботі ми розглядаємо квадратні гратки) з двовимірною концентрацією $N_i = a_i^{-2}$, стороною гратки a_i та

Рис. 2. Трьохшарувата структура, що складається з двох напівобмежених середовищ з діелектричною функцією $\varepsilon_1(\vec{k})$ в області $x \le 0$ з густиною заряду σ_1 на першій поверхні (x = 0) та діелектричною функцією $\varepsilon_3(\vec{k})$ в області $x \ge L$ з густиною заряду σ_2 на другій поверхні (x = L), які розділені вакуумним проміжком $0 \le x \le L$.

ефективним зарядом e_i^* на поверхневих атомах i - готипу на першій (k = 1) та з двовимірною концентрацією $N_n = b_n^{-2}$, стороною гратки b_n та ефективним зарядом e_n^* на поверхневих атомах n - го типу на другій (k = 2) поверхнях металів. Фур'є - компонента густини заряду на впорядкованих поверхневих гратках першої $\sigma_1(q)$ та другої $\sigma_2(q)$ поверхонь може бути представлена в наступному вигляді [3-6]

$$\sigma_{1}(q) = \sum_{i=1}^{v_{1}} \sigma_{i}(q) = (2\pi)^{2} \sum_{i=1}^{v_{1}} e_{i}^{*} N_{i}[\delta(q_{y})\delta(q_{z}) + \delta\left((q_{y} - \frac{2\pi}{a_{i}})\delta\left(q_{z} - \frac{2\pi}{a_{i}}\right)\right], \quad (1)$$

$$\sigma_{2}(q) = \sum_{n=1}^{\nu_{2}} \sigma_{n}(q) = (2\pi)^{2} \sum_{n=1}^{\nu_{1}} e_{n}^{*} N_{n} [\delta(q_{y})\delta(q_{z}) + \delta\left((q_{y} - \frac{2\pi}{b_{n}}) \delta\left(q_{z} - \frac{2\pi}{b_{n}} \right) \right]$$
(2)

де v_1 та v_2 – кількість типів атомних граток на кожній з двох поверхонь, а перший член в (1) і (2) відповідає однорідній (не модульованій) густині заряду на першій та другій поверхнях відповідно.

Розрахуємо структурну $\Delta V_{st}(\vec{r})$ та зарядову $\Delta V_{\sigma}(\vec{r})$ компоненти повного потенціалу

$$V(\vec{r}) = V_0(x) + \Delta V_{\sigma}(\vec{r}) + \Delta V_{st}(\vec{r})$$
(3)

в рамках нелокальної електростатики, оскільки тільки неперервність потенціалу сил зображення $V_0(x)$ на межах розподілу середовищ дозволяє коректне введення як густини заряду $\sigma_{1,2}$ [3-5] так і зовнішніх полів [5,6,8,9].

 $\Delta V(\vec{r})$ в вакуумному зазорі $0 \le x \le L$ між двома неідентичними металами $\varepsilon_1(\vec{k}) \ne \varepsilon_3(\vec{k})$ визначається наступними рівняннями

$$\Delta V(\vec{r}) = \Delta V_{\sigma}(x) + \Delta V_{st}(x); \qquad (4)$$

$$\Delta V_{\sigma}(x) = \frac{4\pi e}{\kappa_1 + \kappa_3 + L\kappa_1\kappa_3} \times \left\{ \left[1 + (L - x) \cdot \kappa_3 \right] \sum_{i=1}^{\nu_1} e_i^* N_i + \left[1 + x \cdot \kappa_1 \right] \cdot \sum_{n=1}^{\nu_2} e_n^* N_n \right\}.$$
 (5)

Для визначення структурної компоненти $\Delta V_{st}(\vec{r})$ в даній роботі обмежимося врахуванням одного типу поверхневих зарядів на обох металевих поверхнях, які утворюють квадратну гратку адсорбованого субмоношарового покриття $v_1 = v_2 = 1$. В цьому випадку, та в межах наближення Томаса-Фермі для діелектричних функцій двох неідентичних металів, для структурного потенціалу $\Delta V_{st}(\vec{r})$ отримуємо наступне рівняння

$$\begin{aligned} \Delta V_{st}(\mathbf{r}) &= -4\pi \mathbf{e} \times \\ &\times \left\{ \frac{\mathbf{e}_{1}^{*} \mathbf{N}_{1} \cdot \left[\alpha_{3} \cdot \mathbf{sh}\left[(\mathbf{L}-\mathbf{x}) \cdot \alpha_{1}\right] + \alpha_{1} \cdot \mathbf{ch}\left[(\mathbf{L}-\mathbf{x}) \cdot \alpha_{1}\right]\right]}{\left[\left(\alpha_{2}\alpha_{3} + \alpha_{1}^{2}\right) \cdot \mathbf{sh}\left(\mathbf{L} \cdot \alpha_{1}\right) + \alpha_{1}\left(\alpha_{2} + \alpha_{3}\right) \cdot \mathbf{ch}\left(\mathbf{L} \cdot \alpha_{1}\right)\right]} \times \\ &\times \cos\left(\frac{2\pi}{a_{1}}\mathbf{y}\right) \cdot \cos\left(\frac{2\pi}{a_{1}}\mathbf{z}\right) + \\ &+ \frac{\mathbf{e}_{2}^{*} \mathbf{N}_{2} \cdot \left[\beta_{3} \cdot \mathbf{sh}\left[(\mathbf{L}-\mathbf{x}) \cdot \beta_{1}\right] + \beta_{1} \cdot \mathbf{ch}\left[(\mathbf{L}-\mathbf{x}) \cdot \beta_{1}\right]\right]}{\left[\left(\beta_{2}\beta_{3} + \beta_{1}^{2}\right) \cdot \mathbf{sh}\left(\mathbf{L} \cdot \beta_{1}\right) + \beta_{1}\left(\beta_{2} + \beta_{3}\right) \cdot \mathbf{ch}\left(\mathbf{L} \cdot \chi_{1}\right)\right]}_{,(6)} \\ &\times \cos\left(\frac{2\pi}{b_{1}}\mathbf{y}\right) \cdot \cos\left(\frac{2\pi}{b_{1}}\mathbf{z}\right) \right\} \end{aligned}$$

де $\kappa_{1,3}^2 = \frac{6\pi e^2 n_{1,3}}{E_F^{1,3}} - padiycu екранування Томаса Фермі, <math>n_{1,3}$ – концентрація електронів в металах, $E_F^{1,3} = \frac{\hbar^2 (3\pi^2 n_{1,3})^{2/3}}{2m_{1,3}} i m_{1,3}$ ефективна маса вільних електронів металів та у випадку квадратних граток поверхневих атомних структур $\alpha_1 = \frac{2\pi}{a_1}\sqrt{2}$;

$$\alpha_{2} = \sqrt{2\left(\frac{2\pi}{a_{1}}\right) + \kappa_{1}^{2}}; \qquad \alpha_{3} = \sqrt{2\left(\frac{2\pi}{a_{1}}\right) + \kappa_{3}^{2}}, \\ \beta_{1} = \frac{2\pi}{b_{1}}\sqrt{2}; \quad \beta_{2} = \sqrt{2\left(\frac{2\pi}{b_{1}}\right) + \kappa_{1}^{2}}; \quad \beta_{3} = \sqrt{2\left(\frac{2\pi}{b_{1}}\right) + \kappa_{3}^{2}}.$$

II. Результати

На рис. 3 показано зміну розподілу потенціалу $V(x) = V_0(x) + \Delta V_{\sigma}(x)$ В системі MBM 3 врахуванням однорідної густини заряду $\sigma_1 = -8 \cdot 10^{13} \frac{e}{cm^2}$ на першій та $\sigma_2 = 5.44 \cdot 10^{13} \frac{e}{cm^2}$ на другій поверхнях двох близько розділених проміжком вакуумним L = 0,6 нм ідентичних металів при $\phi_1 = \phi_2 = 4,6eV$,

Рис. 3. Формування потенціального бар'єру між двома ідентичними металами з поверхневою густиною заряду $\sigma_1 = -8 \cdot 10^{13} \text{ e/}_{cm^2}$ на першій та $\sigma_2 = 5,44 \cdot 10^{13} \text{ e/}_{cm^2}$ на другій поверхні при $\phi_1 = \phi_3 \equiv \phi_0 = 4,6 \text{ eB},$ $n_{1,3} = 10^{22} \text{ cm}^{-3}$ та $m_1 = m_3 = 0,6374$, розділених вакуумною щілиною товщиною L = 0,6 нм (суцільнв крива). Точкова крива – потенціал сил зображення V₀(x) в MBM системі.

Рис. 4. Формування потенціального бар'єру всередині вакуумної щілини товщиною L = 0,6 нм двома ідентичними металами між при $n_{1,3} = 10^{22} \, \mathrm{cm}^{-3}$ $\phi_1 = \phi_3 \equiv \phi_0 = 4,6 \text{ eB},$ та $m_1 = m_3 = 0,6374$ врахуванням 3 зарядового $\Delta V_{\sigma}(x)$ (штрихова крива) та структурного потенціалу $\Delta V_{st}(x,0,0)$ (суцільна крива) з густиною $\sigma_1 = -8 \cdot 10^{13} \frac{e}{cm^2}$ Ta $e_1^* = -0.8$, заряду $N_1 = 10^{14} \text{ cm}^{-2}$ на першій і $\sigma_2 = 5,44 \cdot 10^{13} \text{ e/cm}^2$ та $e_2^* = 0.8$, N₂ = 6.8·10¹³ cm⁻² на другій поверхні металу з впорядкованими гратками адсорбованих моношарів. Точкова крива -- потенціал сил зображення $V_0(x)$.

Рис. 5. Латеральний розподіл структурного $\Delta V_{st}(\frac{L}{2}, y, 0)$ (в eB) в центрі потенціалу вакуумного проміжку $x = \frac{L}{2}$ між двома а з параметрами $n_{1,3} = 10^{22} cm^{-3}$ та ідентичними металами $\varphi_1 = \varphi_3 \equiv \varphi_0 = 4, 6 \text{ eB},$ m₁ = m₃ = 0,6374 та наступних параметрах металів поверхонь з густиною заряду $\sigma_1 = -8 \cdot 10^{13} \frac{e}{cm^2}$ Ta $e_1^* = -0.8$, $N_1 = 10^{14} cm^{-2}$ Ha першій і $\sigma_2 = 5,44 \cdot 10^{13} \text{ e}'_{cm^2}$ та $e_2^* = 0.8$, $N_2 = 6,8 \cdot 10^{13} \text{ cm}^{-2}$ на другій поверхні металу з впорядкованими гратками адсорбованих моношарів.

 $n_{1,3} = 10^{22} \text{ cm}^{-3}$ та $m_1 = m_3 = 0,6374$. Точковою кривою показано розподіл потенціалу сил зображення $V_i^0(x)$ в даній системі.

Як бачимо з наведеного малюнку наявність однорідної густини заряду на поверхнях металів суттєво впливає на розподіл потенціалу у всій МВМ системі.

Вклад структурного потенціалу $\Delta V_{st}(x,0,0)$ (6) в формування повного потенціального бар'єру V(x,0,0) (3) в вакуумній щілині при L = 6 A з густиною заряду $\sigma_1 = -8 \cdot 10^{13} \frac{e}{cm^2}$ та $e_1^* = -0.8$, $N_1 = 10^{14} \text{ cm}^{-2}$ на першій і $\sigma_2 = 5,44 \cdot 10^{13} \frac{e}{cm^2}$ та $e_2^* = 0.8$, N₂ = 6,8·10¹³ cm⁻² на другій поверхнях двох близько розділених вакуумним проміжком L = 0,6 нм ідентичних металів при $\phi_1 = \phi_2 = 4,6eV$, $n_{1,3} = 10^{22} \text{ cm}^{-3}$ та $m_1 = m_3 = 0,6374$ приведено на рис. 4. Тут розподіл повного потенціалу V(x, 0, 0) = V(x)показано суцільною кривою, розподіл потенціалу 3 однорідною (не модульованою) густиною заряду показано штриховою кривою та розподіл потенціалу сил

Рис. 6. Латеральний 3-D розподіл структурного потенціалу $\Delta V_{st}(\frac{L}{2}, y, z)$ (в ев) в центрі вакуумного проміжку $x = \frac{L}{2}$ між двома ідентичними металами з параметрами відповідно до рис. 5.

зображення - точковою кривою.

З наведеного малюнку бачимо, що для малих розділяючих два метали відстанях врахування структурної компоненти потенціалу $\Delta V_{st}(\vec{r})$ може досить суттєво впливати на зміну потенціального бар'єру у всьому вакуумному проміжку.

Визначимо латеральний розподіл структурного потенціалу $\Delta V_{st}(\vec{r})$ в вакуумній щілині системи МВМ при тих же параметрах, що і на рис. 3 та рис. 4. Відповідні розрахунки структурного потенціалу $\Delta V_{st}(\vec{r})$ в центрі вакуумного зазору $x = \frac{L}{2}$, проведені згідно рівняння (6), приведені на наступних малюнках: рис. 5 та рис. 6.

З приведених малюнків видно, що суттєве збільшення (зменшення) висоти потенціального бар'єру в вакуумній щілині відбувається на відстанях, які значно перевищують параметри поверхневих граток адсорбованих атомів. При заданих параметрах це складає у_{min}, z_{min} ~ 5-6 нм, що продемонстровано на рис. 5 та рис. 6.

Висновки

Як бачимо з приведених малюнків врахування мікроскопічної структури металевих поверхонь, обумовлене наявністю адсорбційних субмоношарових покриттів, призводить до суттєвої зміни висоти потенціального бар'єру між металами у всій вакуумній щілині і має осциляторний характер. Суперпозиція модульованої частини потенціалу $\Delta V_{st}(\vec{r})$ від обох поверхонь не тільки змінює форму потенціального бар'єру V(\vec{r}) (рис.4), але й сприяє виникненню областей суттєвого підвищення (або пониження потенціалу) (рис. 5 та рис. 6), що може спричинити виникнення як пріоритетних точок взаємодії між адсорбованими атомами на поверхні металів, так і зумовити виникнення надграток

мінімальної висоти потенціального бар'єру, тобто виникнення надграток емісійних центрів, присутність яких стимульована наявністю на малій відстані $L \sim 0, 3-2$ нм поверхні іншого металу з відмінною мікроскопічною структурою адсорбційного субмоношарового покриття.

Ільченко Л.Г. – канд. фіз.-мат. наук, с.н.с.; **Лобанов В.В.** – доктор хім. наук, пров.н.с; **Чуйко О.О.** – доктор хім. наук, проф., академік.

- [1] L.G. Il'chenko and T.V. Goraychuk Role of the image forces potential in the formation of the potential barrier between closely spaced metals // *Surf. Sci.*, **478**, pp. 169-179 (2001).
- [2] В.В. Лобанов, Ю.И. Горлов, А.А. Чуйко, В.М. Пинчук, Ю.С. Синекоп, Ю.И. Якименко Роль электростатических взаимодействий в адсорбции на поверхности твердых оксидов. ВЕК +, К. 240с. (1999).
- [3] Л.Г. Ильченко, Л.Г. Гречко, А.А. Савон. Пространственное распределение электростатического потенциала вблизи поверхности диэлектрика с модулированным поверхностным зарядом. 1. Атомарночистая поверхность диэлектрика // Укр.фіз.журн. **38**,(3), сс.415-420 (1993).
- [4] Л.Г. Ильченко, А.А. Савон Электростатический потенциальный рельеф поверхности диэлектриков с дискретным распределением заряда // Препринт ИТФ 92-27P, К. 31с (1992).
- [5] L.G. Il'chenko, V.V. Il'chenko, T.V. Goraychuk and I.W. Rangelow. Microscopic structure of the semiconductor surface in the external electric field // Chemistry, physics and technology of surfaces. - N 4-6, pp. 186-195 (2001).
- [6] L.G. Il'chenko. Role of Microscopic Structure of the Surface in Field Emission from Semiconductors. *12th International Vacuum Microelectronics Conference 6th-9th July 1999. Darmstadt, Germany, Technical Digest*, pp.84-85 (1999).
- [7] L.G. Il'chenko, T.V. Goraychuk. Image potential between closely separated quantum size film and metal.// *Ultramicroscopy*. **95**, pp.67-73 (2003).
- [8] L.G. Il'chenko, V.V. Il'chenko. Theoretical Calculation of the Tunnel Characteristics Superthin Microscopic Structure Films on the Metal Substrate. *12th International Vacuum Microelectronics Conference 6th-9th July 1999. Darmstadl, Germany, Technical Digest*, pp.104-105 (1999).
- [9] L.G. Il'chenko, V.V. Il'chenko, T.V. Goraychuk. Role of the electronic structure of metals in the formation of the potential barrier between closely spaced metals. *47th International Field Emission Symposium Berlin, Germany* p.EO12 (2001).

L.G. Il'chenko, V.V. Lobanov, A.A. Chuiko

The Potential Barrier Formation between Two Close Separated Metals with the Adsorbed Submonolayers Coatings

Institute of Surface Chemistry NAS of Ukraine, Generala Naumova Street 17, Kiev 03164 e-mail: vai@rpd.univ.kiev.ua

In this article in the framework of nonlocal electrostatics the charged $\Delta V_{\sigma}(x)$ and the structured $\Delta V_{st}(\vec{r})$ component of the full potential in the vacuum gap between two close spaced metals is calculated theoretically. The structured potential $\Delta V_{st}(\vec{r})$ is determined by the microscopic (atomic) structures of the metal surfaces with the submonolayers of the adsorbed coatings.

It was shown that for the small vacuum intervals $L \sim 0, 3 - 2nm$ the accounting of the structure component $\Delta V_{st}(\vec{r})$ of the full potential determines the lateral change of the potential barrier height in the all vacuum interval.