УДК 535.3, 535.5

ISSN 1729-4428

Д.М. Фреїк, А.М. Дмитрів, Л.Й. Межиловська, П.В. Жуковскі*

Особливості дефектної підсистеми монокристалів Cd_{1-x}Zn_xTe, Cd_{1-x}Mn_xTe

Прикарпатський національний університет імені Василя Стефаника,

вул. Галицька, 201, м. Івано-Франківськ, 76000, Україна, E-mail: freik@pu.if.ua ^{*}Люблінський технічний університет, 20-618 Люблін, Польща

E-mail: mario@elektron.pol.lublin.pl.

На основі кристалоквазіхімічних підходів запропоновано механізми утворення твердих розчинах n-Cd_{1-x}Zn_xTe, p-Cd_{1-x}Mn_{-x}Te. Розраховано концентрації точкових дефектів і носіїв струму.

Ключові слова: кадмій телурид, тверді розчини, кристалоквазіхімія, точкові дефекти, сфалерит.

Стаття поступила до редакції 17.05.2005; прийнята до друку 30.05.2005.

Вступ

СdTe і тверді розчини на його основі є базовими матеріалами для напівпровідникових детекторів рентгенівського і гама випромінювання, які працюють без кріогенного охолодження [1,2]. Відомо, що однією із вимог яка ставиться до детекторного матеріалу є його високоомність, яка досягається легуванням СdTe елементами III, VII груп або ізовалентним заміщенням при утворенні твердих розчинів [3].

На величину провідності напівпровідників, у значній мірі, впливає компенсація власних точкових дефектів, яка зростає із збільшенням ширини забороненої зони. Для твердих розчинів $Cd_{1-x}Zn_xTe$ і $Cd_{1-x}Mn_xTe$ ширина забороненої зони із ростом складу x збільшується [4-6]. Зокрема, ширина забороненої зони $Cd_{0.95}Zn_{.0.05}Te$, знайдена із оптичних вимірювань складає $E_g = 1,505$ еВ (300 K). Це погоджується з майже лінійною зміною E_g від 1,47 еВ для CdTe до 2,26 еВ для ZnTe [6]. Значення E_g знайдене для Cd_0.96Mn_0.04Te складає 1,507 еВ [6].

Авторами [6] також досліджено механізми електропровідності на спеціально нелегованих монокристалах $Cd_{1-x}Zn_{-x}Te$ (x = 0,05), $Cd_{1-x}Mn_{-x}Te$ (x = 0,04) і CdTe р-типу провідності. Виявлено акцепторні рівні з енергією іонізації $E_a = 0,54$; 0,64; 0,68 або 0,72 еВ. Акцепторні рівні виявлені для твердого розчину $Cd_{1-x}Mn_xTe$ і в [7]. Природа цих рівнів зараз до кінця не встановлена і носить дискусійний характер. В роботі [8] були одержані кристали n-Cd_{1-x}Zn_{-x}Te з питомим опором до 10^{10} ÷ 10^{11} Ом·см при загальному надлишку металу. Оскільки надлишок над стехіометричним складом металу створює власні донори, це повинно було би забезпечувати достатньо низький питомий опір кристалів і тому причина їх високоомності не зрозуміла. Автори [9] пояснюють зміну властивостей кристалів $Cd_{0,8}Zn_{0,2}$ Те різними формами існування фонової домішки кисню, концентрація якої у сполуках $A^{II}B^{VI}$ може досягати 10^{19} см⁻³.

У даній роботі на основі кристалоквазіхімічних підходів утворення твердих розчинів $n-Cd_{1-x}Zn_xTe$, p- $Cd_{1-x}Mn_{-x}Te$ запропоновано механізми і моделі точкових дефектів. Розраховані концентрації точкових дефектів і носіїв струму.

I. Експеримент

В роботі досліджувалися монокристалічні зразки Cd_{1-x}Zn-xTe i Cd_{1-x}Mn-xTe [10,11], вирощених із розплаву методом Бріджмена. Згідно даних рентгенографії, система CdTe-ZnTe утворює неперервний ряд твердих розчинів (0,0-1,0)структури сфалериту. Параметр гратки для Cd_{1-x}Zn. _хТе лінійно зменшується із складом (рис. 1, а). Ця залежність описується рівнянням: а, нм = 0,6472- $0,04 \cdot x$, де x – мольна частка ZnTe.

Область твердих розчинів при 1070 К (фаза $Cd_{1-x}Mn_xTe$) знаходиться в межах від 0 до 71 мол. % MnTe [12]. Зразки в межах 71,5–99,6 мол. % MnTe були двофазними і містили фази $Cd_{1-x}Mn_xTe$ (гратка типу сфалериту) і $Cd_yMn_{1-y}Te$ (структура типу NiAs). Концентраційні залежності параметра елементарної гратки в області складу утворення твердого розчину $Cd_{1-x}Mn_xTe$ структури сфалериту показано на рис. 1, б. Залежність параметра *а* підпорядковується правилу Вегарда, тобто залежність *а* (*x*) можна

описати лінійним рівнянням: a, нм = 0,6491-0,0152·x, де x – мольна частка MnTe.

вакансій V["]_{Cd} у катіонній підгратці відповідно:

Рис. 1. Залежність параметра кристалічної гратки твердих розчинів від складу: а – Cd_{1-x}Zn_{-x}Te (●– дані [13]); б – Cd_{1-x}Mn_xTe (●-дані [14]), ▲ – дані нашої роботи.

Зменшення параметра гратки для твердих розчинів $Cd_{1-x}Zn_{-x}Te$, $Cd_{1-x}Mn_xTe$ із ростом складу (рис. 1) пов'язане із тим, що іонні радіуси заміщуючих іонів $R(Zn^{2+}) - 0,84$ Å і $R(Mn^{2+}) - 0,92$ Å на 0,11 і 0,03 Å є меншими ніж радіус заміщеного кадмію $R(Cd^{2+}) - 0,95$ Å [15].

Електричні параметри кристалів $Cd_{1-x}Zn_xTe$, $Cd_{1-x}Mn_xTe$ вимірювали при кімнатній температурі компенсаційним методом у постійних електричних і магнітних полях. Концентрація електронів для n-Cd_{1-x}Zn_{-x}Te (0 ≤ x ≤ 0,2) при 300 К становила 10¹⁴ – 10¹⁶ см⁻³ і з ростом складу ZnTe зменшувалася [16]. Концентрація дірок для p-Cd_{1-x}Mn_{-x}Te (0 ≤ x ≤ 0,1) при 300 К і з ростом складу MnTe також зменшувалася і знаходилася в межах 10¹⁵–10¹⁶ см⁻³ [7].

II. Кристалоквазіхімічні рівняння дефектів

3.1. Нестехіометричний кадмій телурид

Згідно уявлень кристалоквазіхімії нестехіометричний телурид кадмію з надлишком кадмію за умови утворення міжвузлових атомів металу Cd_i описується такими рівняннями:

$$V_{Cd}V_{Te}^{\bullet} + Cd^{\circ} \rightarrow Cd_{0,5Cd}V_{0,5Cd}V_{Te}^{\bullet}(Cd_{0,5}^{\circ})_{i},$$

$$(1-\alpha)(Cd_{Cd}^{\times}Te_{Te}^{\times}) + \alpha (Cd_{0,5Cd}^{*}V_{0,5Cd}^{*}V_{Te}^{\bullet}(Cd_{0,5}^{\circ})_{i}) \rightarrow$$

$$\rightarrow (Cd_{1-\alpha}^{\times}Cd_{0,5\alpha}^{*}V_{0,5\alpha}^{*})_{Cd} (Te_{1-\alpha}^{\times}V_{\alpha}^{\bullet})_{Te} (Cd_{0,5\alpha}^{\circ})_{i} \rightarrow (1)$$

$$\rightarrow (Cd_{1-\alpha+0,5\alpha}^{\times}V_{0,5\alpha}^{*})_{Cd} (Te_{1-\alpha}^{\times}V_{\alpha}^{\bullet})_{Te} (Cd_{0,5\alpha}^{\bullet})_{i} + 2\alpha e^{i}.$$

При надлишку телуру і наявності міжвузлового атома телуру Теі та одно- $V_{Cd}^{'}$ і двозарядних

$$V_{Cd}^{*}V_{Te}^{\bullet}+2Te \rightarrow V_{Cd}^{*}Te_{Te}^{\bullet}(Te_{i}^{\circ}),$$

$$(1-\beta) Cd_{Cd}^{*}Te_{Te}^{*}+\beta V_{Cd}^{*}Te_{Te}^{\bullet}(Te_{i}^{\circ}) \rightarrow$$

$$\rightarrow (Cd_{1-\beta}^{*}V_{\beta}^{*})_{Cd} (Te_{1-\beta}^{*}Te_{\beta}^{*})_{Te} (Te_{i\beta}^{\circ}) \rightarrow$$

$$\rightarrow (Cd_{1-\beta}^{*}V_{\beta}^{*})_{Cd} Te_{Te}^{*}(Te_{i\beta}^{*})+3\beta h^{\bullet} \leftrightarrow$$

$$\leftrightarrow (Cd_{1-\beta}^{*}V_{0,5\beta}^{*}V_{0,5\beta}^{*})_{Cd} Te_{Te}^{*}(Te_{i\beta}^{*})+2,5\beta h^{\bullet}.$$
(2)

Де, α і β – відхилення від стехіометрії. При аналізі рівнянь (1), (2) видно, що електронний тип провідності телуриду кадмію пов'язаний дефектами: V_{Te}, Cd^{••}, які утворюються за рахунок надлишкового кадмію, а дірковий – із вакансіями V_{Cd}, V_{Cd} і міжвузломим атомом Te_i. Тут х – нейтральні, • – позитивні, ' – негативні заряди; кількість цих знаків відповідає кратності іонізації, е' – концентрація електронів, h[•] – концентрація дірок.

На основі приведених кристалоквазіхімічних рівнянь (1), (2) нестехіометричного кадмій телуриду можна розрахувати концентрацію точкових дефектів і носіїв струму для заданого відхилення від стехіометрії α, β. Для розрахунку використовували запропоновану методику в роботі [17]. α, β визначали як максимальне відхилення Cd в CdTe із p-T-хдіаграм в області гомогенності сполуки приведених в роботах [18,19] Залежність параметра гратки від концентрації носіїв струму кристалів CdTe взято із роботи [20]. Необхідно відзначити, що заряди дефектів у кристалоквазіхімічних рівняннях € $A^{\mathrm{II}}B^{\mathrm{VI}}$ нецілочисельними так як сполуки характеризуються ковалентно-іонним змішаним зв'язком. Тому, при проведенні розрахунків

Таблиця 1

α, ат. %	а, нм	$V_{Te}^{\bullet\bullet}$, cm ⁻³	$Cd_i^{\bullet\bullet}$, cm^{-3}	. V ["] _{Cd} , cm ⁻³	п, см ⁻³	n _{н,} см ⁻³
7·10 ⁻⁵	0,6482	8,23·10 ¹⁵	$4,11\cdot10^{15}$	$4,11\cdot 10^{15}$	8,23·10 ¹⁵	$8,23 \cdot 10^{15}$
3·10 ⁻³	0,6481	$3,53 \cdot 10^{17}$	$1,76 \cdot 10^{17}$	$1,76 \cdot 10^{17}$	$3,53 \cdot 10^{17}$	$3,53 \cdot 10^{17}$
8·10 ⁻³	0,6481	9,41·10 ¹⁷	$4,70 \cdot 10^{17}$	$4,70 \cdot 10^{17}$	9,41·10 ¹⁷	9,41·10 ¹⁷
$4 \cdot 10^{-1}$	0,6480	$4,70 \cdot 10^{19}$	$2,35 \cdot 10^{19}$	$2,35 \cdot 10^{19}$	$4,70 \cdot 10^{19}$	$4,70 \cdot 10^{19}$
1	0,6480	$1,17 \cdot 10^{20}$	$5,88 \cdot 10^{19}$	5,88·10 ¹⁹	$1,17 \cdot 10^{20}$	$1,17 \cdot 10^{20}$

Розраховані концентрації дефектів та носіїв струму у n-CdTe

Таблиця 2

Розраховані концентрації дефектів та носіїв струму у p-CdTe

β, ат. %	а, нм	V _{Cd} , см ⁻³	V ["] _{Cd} , см ⁻³	Теі, см ⁻³	р, см ⁻³	n _{н,} см ⁻³
9,2·10 ⁻³	0,6484	$2,70 \cdot 10^{17}$	$5,41 \cdot 10^{17}$	$5,41 \cdot 10^{17}$	$1,35 \cdot 10^{18}$	$1,35 \cdot 10^{18}$
1,6.10-2	0,6483	$4,70 \cdot 10^{17}$	9,41·10 ¹⁷	9,41·10 ¹⁷	$2,35 \cdot 10^{18}$	$2,35 \cdot 10^{18}$
9·10 ⁻¹	0,6480	$2,64 \cdot 10^{19}$	$5,29 \cdot 10^{19}$	5,29·10 ¹⁹	$1,32 \cdot 10^{20}$	$1,32 \cdot 10^{20}$

враховували, що зв'язок Cd–Te має 21 % іонності [21]. Результати розрахунків приведені у табл. 1, 2.

Холлівська концентрація носіїв струму (n_H) визначається як різниця концентрацій вільних носіїв – електронів (n) і дірок (p)

 $n_{\rm H} = n - p \ . \tag{3}$

При утворенні n-CdTe рівняння електронейтральності згідно (1) має вигляд: $\alpha [v_{12}^{**}] + 0.5\alpha [Cd_{12}^{**}] = 0.5\alpha [v_{Cd}^{**}] + n.$ (4)

$$\alpha \left[\mathbf{V}_{\mathrm{Te}}^{\bullet} \right] + 0.5 \alpha \left[\mathrm{Cd}_{1}^{\bullet} \right] = 0.5 \alpha \left[\mathbf{V}_{\mathrm{Cd}} \right] + n, \tag{4}$$

 $e n = 2\alpha e$, p = 0.

Тоді $n_{\rm H} = \alpha \left[V_{\rm Te}^{\bullet \bullet} \right] + 0, 5\alpha \left[Cd_i^{\bullet \bullet} \right] - 0, 5\alpha \left[V_{\rm Cd}^{"} \right].$

Рівняння електронейтральності для p-CdTe згідно рівняння (2):

$$0,5\beta \lfloor V_{Cd} \rfloor + \lfloor V_{Cd}^{"} \rfloor + \beta \lfloor Te_{i}^{'} \rfloor = p,$$
(5)

$$ge \ p = 2,5\beta h^{\bullet}, n = 0.$$

Тоді $n_{\text{H}} = 0, 5\beta \left[V_{Cd} \right] + 0, 5\beta \left[V_{Cd} \right] + \beta \left[Te_i \right].$

Із проведених розрахунків видно (табл. 1), що із зростанням надстехіометричного кадмію має місце значне збільшення вакансій телуру, які і є відповідальними за значення концентрації носіїв струму (n_H). Двозарядний міжвузловий кадмій повністю компенсується вакансіями $V_{Cd}^{"}$ (табл. 1). У p-CdTe домінують вакансії кадмію (табл. 2) і міжвузлові атоми телуру.

3.2. Твердий розчин Cd_{1-x}Zn_xTe

Кристалоквазіхімічні рівняння для твердих розчинів Cd_{1-x}Zn_xTe одержимо аналогічно як і для нестехіометрії з кадмій телуриду (1), (2):

$$\mathbf{V}_{\mathrm{Cd}}^{"}\mathbf{V}_{\mathrm{Te}}^{"}+ \mathbf{Zn}^{2+}\mathbf{Te}^{2-} \leftrightarrow \mathbf{Zn}_{\mathrm{Cd}}^{\times}\mathbf{Te}_{\mathrm{Te}}^{\times}.$$
 (6)

Суперпозиція n-CdTe (1) з (3) призводить до:

$$(1-x) \left[\left(Cd_{1-\alpha+0,5\alpha}^{\times} V_{0,5\alpha}^{"} \right)_{Cd} \left(Te_{1-\alpha}^{\times} V_{\alpha}^{\bullet \bullet} \right)_{Te} \left(Cd_{0,5\alpha}^{\bullet \bullet} \right)_{i} + 2\alpha e' \right] + x \left(Zn_{Cd}^{\times} Te_{Te}^{\times} \right) \rightarrow \left(Cd_{((1-\alpha)+0,5\alpha))(1-x)}^{\times} V_{0,5\alpha(1-x)}^{"} Zn_{x}^{\times} \right)_{Cd} \left(Te_{(1-\alpha)(1-x)+x}^{\times} V_{\alpha(1-x)}^{\bullet \bullet} \right)_{Te} \left(Cd_{0,5\alpha(1-x)}^{\bullet \bullet} \right)_{i} + 2\alpha(1-x)e'.$$

$$(7)$$

Накладання кристалоквазіхімічного рівняння р-

$$(1-x) \left[\left(Cd_{1-\beta}^{\times}V_{0,5\beta}^{'}V_{0,5\beta}^{'}\right)_{Cd}^{\times}Te_{Te}^{\times}\left(Te_{i\beta}^{'}\right) + 2,5\beta h^{\bullet} \right] + x \left(Zn_{Cd}^{\times}Te_{Te}^{\times} \right) \rightarrow \\ \rightarrow \left(Cd_{(1-\beta)(1-x)}^{\times}Zn_{x}^{\times}V_{0,5\beta(1-x)}^{'}V_{0,5\beta(1-x)}^{''} \right)_{Cd}^{\times}Te_{Te}^{\times}\left(Te_{i\beta(1-x)}^{'}\right) + 2,5\beta(1-x)h^{\cdot}.$$

$$(8)$$

Таким чином, твердий розчин Cd_{1-x}Zn_xTe при надлишку металу описується рівнянням (7), при

надлишку телуру – рівнянням (8). Із цих рівнянь видно, що концентрація основних носіїв струму зменшується на величину (1-х), де х – мольна частка легуючої сполуки. Зменшення концентрації основних носіїв пояснюється заліковуванням вакансій V_{Cd}, V_{те} іонами цинку і телуру.

Розрахунок концентрації точкових дефектів і носіїв струму у твердому розчині $n-Cd_{1-x}Zn_xTe$ ($0 \le x \le 0,2$) проводили як і для нестехіометричного кадмій телуриду з використанням рівняння (7).

Рівняння електронейтральності згідно (7) має вигляд: $\alpha(1-x)\left[V_{Te}^{\bullet\bullet}\right] + 0.5\alpha(1-x)\left[Cd_{i}^{\bullet\bullet}\right] = 0.5\alpha(1-x)\left[V_{Cd}^{"}\right] + n, (9)$ де $n = 2\alpha(1-x)e', p = 0.$ Тоді $n_{H} = \alpha(1-x)\left[V_{Te}^{\bullet\bullet}\right] + 0.5\alpha(1-x)\left[Cd_{i}^{\bullet\bullet}\right] - 0.5\alpha(1-x)\left[V_{Cd}^{"}\right].$ Значення концентрацій вільних носіїв n, холлівської

Значення концентрацій вільних носіїв n, холлівської концентрації n_H, вакансій телуру (табл. 3) мають однакові значення і зменшуються із ростом складу

Таблиця 3

α, %	а, нм	x	$V_{Te}^{\bullet \bullet}$, cm ⁻³	$Cd_i^{\bullet \bullet}$, cm ⁻³	V ["] _{Cd} , см ⁻³	n, cm ⁻³	n _н ,см ⁻³
5,2·10 ⁻⁵	0,6460	0,03	$5,38 \cdot 10^{15}$	$2,69 \cdot 10^{15}$	$2,69 \cdot 10^{15}$	$5,38 \cdot 10^{15}$	5,38·10 ¹⁵
	0,6456	0,04	$5,34 \cdot 10^{15}$	$2,67 \cdot 10^{15}$	$2,67 \cdot 10^{15}$	$5,34 \cdot 10^{15}$	$5,34 \cdot 10^{15}$
	0,6448	0,06	$5,25 \cdot 10^{15}$	$2,62 \cdot 10^{15}$	$2,62 \cdot 10^{15}$	$5,25 \cdot 10^{15}$	5,25·10 ¹⁵
	0,6432	0,1	$5,06 \cdot 10^{15}$	$2,53 \cdot 10^{15}$	$2,53 \cdot 10^{15}$	$5,06 \cdot 10^{15}$	5,06·10 ¹⁵
	0,6392	0,2	$4,58 \cdot 10^{15}$	$2,29 \cdot 10^{15}$	$2,29 \cdot 10^{15}$	$4,58 \cdot 10^{15}$	4,58·10 ¹⁵
7·10 ⁻⁵	0,6460	0,03	$7,25 \cdot 10^{15}$	$3,62 \cdot 10^{15}$	$3,62 \cdot 10^{15}$	$7,25 \cdot 10^{15}$	$7,25 \cdot 10^{15}$
	0,6456	0,04	$7,19.10^{15}$	$3,59 \cdot 10^{15}$	$3,59 \cdot 10^{15}$	$7,19 \cdot 10^{15}$	7,19·10 ¹⁵
	0,6448	0,06	$7,06 \cdot 10^{15}$	3,53·10 ¹⁵	$3,53 \cdot 10^{15}$	7,06·10 ¹⁵	7,06·10 ¹⁵
	0,6432	0,1	6,81·10 ¹⁵	$3,41 \cdot 10^{15}$	$3,41 \cdot 10^{15}$	$6,81 \cdot 10^{15}$	6,81·10 ¹⁵
	0,6392	0,2	$6,17 \cdot 10^{15}$	$3,08 \cdot 10^{15}$	$3,08 \cdot 10^{15}$	$6,17 \cdot 10^{15}$	$6,17\cdot10^{15}$
8,5·10 ⁻⁴	0,6460	0,03	$8,81 \cdot 10^{16}$	$4,40 \cdot 10^{16}$	$4,40.10^{16}$	$8,81 \cdot 10^{16}$	8,81·10 ¹⁶
	0,6456	0,04	$8,73 \cdot 10^{16}$	$4,36 \cdot 10^{16}$	$4,36 \cdot 10^{16}$	$8,73 \cdot 10^{16}$	$8,73 \cdot 10^{16}$
	0,6448	0,06	$8,58 \cdot 10^{16}$	$4,29 \cdot 10^{16}$	$4,29 \cdot 10^{16}$	$8,58 \cdot 10^{16}$	$8,58 \cdot 10^{16}$
	0,6432	0,1	$8,27 \cdot 10^{16}$	$4,14 \cdot 10^{16}$	$4,14 \cdot 10^{16}$	$8,27 \cdot 10^{16}$	$8,27 \cdot 10^{16}$
	0,6392	0,2	$7,49.10^{16}$	$3,75 \cdot 10^{16}$	$3,75 \cdot 10^{16}$	$7,49.10^{16}$	$7,49.10^{16}$

Розраховані концентрації дефектів та носіїв струму у твердому розчині n-Cd_{1-x}Zn_xTe

Таблиця 4

Розраховані концентрації дефектів та носіїв струму у твердому розчині p-Cd_{1-x} Mn_xTe

β, %	а, нм	x	V _{Cd} , см ⁻³	V ["] _{Cd} , см ⁻³	р, см ⁻³	$n_{\rm H}$, cm^{-3}
1,6·10 ⁻⁵	0,6487	0,02	$4,59 \cdot 10^{14}$	$9,19 \cdot 10^{14}$	$1,38 \cdot 10^{15}$	$1,38 \cdot 10^{15}$
	0,6484	0,04	$4,51 \cdot 10^{14}$	$9,02 \cdot 10^{14}$	$1,35 \cdot 10^{15}$	$1,35 \cdot 10^{15}$
	0,6481	0,06	$4,41 \cdot 10^{14}$	$8,84 \cdot 10^{14}$	$1,32 \cdot 10^{15}$	$1,32 \cdot 10^{15}$
	0,6475	0,1	$4,24 \cdot 10^{14}$	$8,49 \cdot 10^{14}$	$1,27 \cdot 10^{15}$	$1,27 \cdot 10^{15}$
	0,6464	0,2	$3,79 \cdot 10^{14}$	$7,58 \cdot 10^{15}$	$1,14 \cdot 10^{15}$	$1,14 \cdot 10^{15}$
6,4·10 ⁻⁵	0,6487	0,02	$1,83 \cdot 10^{15}$	$3,67 \cdot 10^{15}$	5,51·10 ¹⁵	$5,51 \cdot 10^{15}$
	0,6484	0,04	$1,80 \cdot 10^{15}$	$3,61 \cdot 10^{15}$	$5,40 \cdot 10^{15}$	$5,40\cdot10^{15}$
	0,6481	0,06	$1,76 \cdot 10^{15}$	$3,53 \cdot 10^{15}$	$5,31 \cdot 10^{15}$	5,31·10 ¹⁵
	0,6475	0,1	$1,69 \cdot 10^{15}$	$3,39 \cdot 10^{15}$	$5,09 \cdot 10^{15}$	$5,09 \cdot 10^{15}$
	0,6464	0,2	$1,51 \cdot 10^{15}$	$3,03 \cdot 10^{15}$	$4,55 \cdot 10^{15}$	$4,55 \cdot 10^{15}$
9,2·10 ⁻³	0,6487	0,02	$2,64 \cdot 10^{17}$	$5,28 \cdot 10^{17}$	$7,93 \cdot 10^{17}$	$7,93 \cdot 10^{17}$
	0,6484	0,04	$2,59 \cdot 10^{17}$	$5,18 \cdot 10^{17}$	$7,77 \cdot 10^{17}$	$7,77 \cdot 10^{17}$
	0,6481	0,06	$2,54 \cdot 10^{17}$	$5,08 \cdot 10^{17}$	$7,62 \cdot 10^{17}$	$7,62 \cdot 10^{17}$
	0,6475	0,1	$2,44 \cdot 10^{17}$	$4,88 \cdot 10^{17}$	$7,32 \cdot 10^{17}$	$7,32 \cdot 10^{17}$
	0,6464	0,2	$2,18 \cdot 10^{17}$	$4,36 \cdot 10^{17}$	$6,54 \cdot 10^{17}$	$6,54 \cdot 10^{17}$

ZnTe. Відповідальними за п-тип провідності кристалів є вакансії телуру $V_{Te}^{\bullet\bullet}$ в аніонній підгратці (рис. 3 – крива 3). При цьому ефективність аніонних вакансій зростає із збільшенням надстехіометрії кадмію у CdTe і зменшується із ростом складу ZnTe (табл. 3). Вакансії кадмію $V_{Cd}^{"\bullet}$ і міжвузлові атоми кадмію Cd^{••} повністю компенсуються між собою

(рис. 3 – криві 1,2). Відзначені залежності є характерними для різних значень надстехіометричного кадмію (табл. 3).

2.2. Твердий розчин Cd_{1-x}Mn_xTe

В твердому розчині р-Cd_{1-x}Mn_xTe $(0 \le x \le 0,2)$ проводили розрахунок концентрації точкових дефектів і носіїв струму за рівнянням приведеним нижче:

$$(1-x) \left[\left(Cd_{1-\beta}^{\times} V_{0,5\beta}^{'} V_{0,5\beta}^{"} \right)_{Cd} Te_{Te}^{\times} + 1, 5\beta h^{\bullet} \right] + x \left(Mn_{Cd}^{\times} Te_{Te}^{\times} \right) \rightarrow \rightarrow \left(Cd_{(1-\beta)(1-x)}^{\times} V_{0,5\beta(1-x)}^{'} V_{0,5\beta(1-x)}^{"} Mn_{x}^{\times} \right)_{Cd} Te_{Te}^{\times} + 1, 5\beta(1-x)h^{\bullet}.$$

$$(10)$$

Рис. 3. Розраховані значення концентрації дефектів [N] і холлівської концентрації носіїв струму (n_H) системи n-CdTe-ZnTe при надстехіометрії кадмію α : суцільні лінії –5·10⁻⁵ ат.%, штрихові лінії – 7·10⁻⁵ ат.%; 1 – Cd₁²⁺, 2 – V_{Cd}²⁺, 3 – V_{Te}²⁺, 4 – n_H .

Рис. 4. Розраховані значення концентрації дефектів [N] і холлівської концентрації носіїв струму (n_H) системи p-CdTe-MnTe при надстехіометрії телуру β : a –1,6·10⁻⁵ at.%, б – 6,4·10⁻⁵ at.%⁵, 1 – V_{Cd}^{-} , 2 – V_{Cd}^{2-} , 3 – n_H.

Рівняння електронейтральності для p-Cd₁. _xMn_xTe згідно рівняння (10) буде:

$$0,5\beta(1-x) \Big[V'_{Cd} \Big] + 0,5\beta(1-x) \Big[V'_{Cd} \Big] = p,$$
(11)

$$p = 1,5\beta(1-x)h^{\bullet}, n = 0.$$

Тоді_{п н} = 0,5
$$\beta$$
(1 – x) $\begin{bmatrix} V'_{Cd} \end{bmatrix}$ + 0,5 β (1 – x) $\begin{bmatrix} V'_{Cd} \end{bmatrix}$.

З аналізу залежностей вільних носіїв р і холлівської концентрації n_H (табл. 4) видно, що вони одного порядку. При цьому відповідальними за р-тип провідності матеріалу є одно- і двозаряджені вакансії кадмію $V_{Cd}, V_{Cd}^{"},$ концентрація яких із збільшенням вмісту МпТе зменшується (рис. 4 – криві 1, 2). Переважаючими акцепторами у p-Cd_{1-x}Mn_xTe є двозарядні вакансії кадмію V["]_{Cd} (рис. 4 – крива 3), ефективність яких зростає із збільшенням надстехіометрії телуру (β) у CdTe і зменшується із ростом складу МnTe у твердому розчині (табл. 4). Розраховані значення холлівської концентрації носіїв струму також зменшуються (рис. 4 – крива 1).

Висновки

1. На основі запропонованої моделі дефектної підсистеми у n- і p-CdTe з різним відхиленням від стехіометрії розраховано концентрацію точкових дефектів і носіїв заряду.

2. Методом кристалоквазіхімії проаналізовано процеси дефектоутворення у твердих розчинах n-Cd_{1-x}Zn_xTe, p-Cd_{1-x}Mn_xTe.

3. Показано, що у твердих розчинах $Cd_{1-x}Zn_xTe$, $Cd_{1-x}Mn_xTe$ утворення дефекту заміщення Zn_{Cd} і Mn_{Cd} призводить до зменшення сталої гратки сфалеритної структури з ростом складу.

4. На основі кристалоквазіхімічних рівнянь виконано розрахунок концентрації точкових дефектів і носіїв струму $n-Cd_{1-x}Zn_xTe$ і $p Cd_{1-x}Mn_xTe$.

5. Зменшення концентрації вільних носіїв у твердих розчинах із ростом складу згідно запропонованих моделей узгоджується з експериментальними результатами вимірювання ефекту Холла.

Фреїк Д.М. – доктор хімічних наук, професор, директор Фізико-хімічного інституту, завідувач кафедри фізики і хімії твердого тіла;

Дмитрів А.М. – аспірант кафедри фізики і хімії твердого тіла;

Жуковські П.В. – доктор наук, асоційований професор;

Межиловська Л.Й. – кандидат фізикоматематичних наук, доцент.

- G. Bertuccio, G. Ferrari, P. Gallina, M. Sampietro, E. Caroli, A. Donati, W. Dusi. Experimental Analysis of Current Noise Spectra in CdTe Detectors // Proc. SPIE, vol. 3768, pp. 402-408 (1999).
- [2] L.A. Hamel, O. Tousignant, M. Couillard, J.F. Courville, V.T. Jordanov. An Imaging CdZnTe Detector with Coplanar Orthogonal Anode Strips // Proceedings of MRS, vol. 487, pp. 211-216 (1998).
- [3] Д.В. Корбутяк, С.В. Мельничук, П.М. Ткачук. Домішково-дефектна структура CdTe:Cl матеріалу для детекторів іонізуючого випромінювання (Огляд) // Український фізичний журнал, 44(6), сс. 730-737 (1999).
- [4] Полупроводниковые твердые растворы и их применение: Справочные таблицы / Н.Н. Берченко, В.Е. Кревс, В.Г. Средин. Воениздат, М. 208 с. (1982).
- [5] А.И. Белогорохов, В.М. Лакеенков, Л.И. Белогорохова. Оптические свойства монокристаллов Cd_{1-x}Zn_xTe (0 < x < 0.1) в инфракрасном диапазоне длин волн // Физика и техника полупроводников, 35(7), сс. 808-811 (2001).
- [6] Л.А Косяченко, А.В. Марков, Е.Л. Маслянчук, И.М Раренко, В.М. Склярчук. Особенности электропроводности монокристаллов Cd_{1-x}Zn_xTe и Cd_{1-x}Mn_xTe // Физика и техника полупроводников, **37**(12), сс. 1420-1426 (2003).
- [7] А.И Власенко, В.Н. Бабенцов, З.К. Власенко, С.В. Свечников, И. М. Раренко, З.И. Захарук, Е.С. Никонюк, В.Л. Шляховый. Акцепторы в Cd_{1-x}Mn_xTe (x < 0,1) // Физика и техника полупроводников, **31**(8), сс. 1017-1020 (1997).
- [8] V.K. Komar, H. Hermon, M.S. Goorsky et al. *Semiconductors for Room Temperature Radiation Detector*. applications II, ed. by R.B. James (Pittsburgh, PA, 1998). Mater. Res. Sos., 487 (1998).
- [9] Н.К. Морозова, И.А. Каретников, В.В. Блинов, В.К. Комарь, В.Г. Галстян, В.С. Зимгорский. Зависимость свойств кристаллов Cd_{1-x}Zn_xTe от типа собственных точечных дефектов и форм присутствия кислорода // Физика и техника полупроводников, 33(5), сс. 569-573 (1999).
- [10] Д.М. Фреїк, А.М. Дмитрів, П.В. Жуковскі, Л.Й. Межиловська. Атомні дефекти і фізико-хімічні властивості твердих розчинів Cd_{1-x}Mn_xTe з участю кисню при відпалі // *Фізика і хімія твердого тіла*, **5**(1), сс. 147-152 (2004).
- [11] Л.Й. Межиловська, А.М. Дмитрів, П.В. Жуковскі. Кристалоквазіхімія атомних дефектів твердих розчинів Cd_{1-x}Zn_xTe з участю кисню // *Фізика і хімія твердого тіла*, **5**(2), сс. 325-329 (2004).
- [12] И.Н. Один, М.В. Чукичев, М.Э. Рубина. Фазовая диаграмма и люминесцентные свойства растворов системы CdTe-MnTe // Изв. АН СССР. Неорганические материалы, **39**(4), сс 425-428 (2003).
- [13] Г.М. Григорович, М.А. Рувинский. // Физика и техника полупроводников, 5, сс. 742 (1971).

- [14] М.Н. Мамонтов, Л.Г. Севастьянова. Фазовые соотношения в тройной системе CdTe-MnTe-Te при 643 К // Неорганические материалы, **32**(7), сс. 810-815 (1996).
- [15] В.М. Лебедев. Ионно-атомные радиусы и их значения для геохимии и химии. Изд-во Ленингр. унив-та, с. 156 (1969).
- [16] А.И. Белогорохов, Л.И. Белогорохова, А.Г. Белов, В.М. Лакеенков, Н.А. Смирнова. К вопросу о поглощении инфракрасного излучения свободными носителями заряда в n-Cd_{1-x}Zn_xTe // Физика и техника полупроводников, **33**(5), сс. 549-552 (1999).
- [17] Л.Й. Межиловська, А.М. Дмитрів, Д.М. Фреїк, П.В. Жуковскі. Точкові дефекти твердого розчину Cd_xHg₁. _xTe // Фізика і хімія твердого тіла, **5**(4), сс. 792-798 (2004).
- [18] О.А. Матвеев, А.И. Терентьев. Самокомпенсация в CdTe<Cl> в условиях фазового равновесия кристаллпар кадмия (теллура) // Физика и техника полупроводников, **32**(2), сс. 159-163 (1998).
- [19] В.М. Глазов, Л.М. Павлова. Область гомогенности на основе теллурида кадмия в системе кадмий-теллур. // Неорганические материалы, **30**(5), сс. 629-634 (1994).
- [20] С.А. Медведев, С.Н. Максимовский, К.В. Киселева, Ю.В. Клевков, Н.Н. Сентюрина. О природе точечных дефектов в нелегированом CdTe // Изв. АН СССР. Неорганические материалы, 9(3), сс. 356-360 (1973).
- [21] К.В. Шалимова, В.А. Дмитриев. Изменение типа стабильной структуры в ряду соединений А^{II}В^{VI} // *Кристаллография*, **17**(3), сс. 541-544 (1972).

D. Freik, A. Dmytriv, L. Mezhylovska, P. Zukowski*

The Features of Cd_{1-x}Zn_xTe, Cd_{1-x}Mn_xTe Crystals Defect Subsystem

Vasyl Stefanyk' Prekarpathian University, 201, Galytska Str., Ivano-Frankivsk, 76000, Ukraine, E-mail: <u>freik@pu.if.ua</u> *Lyubli Technical University, 20-618 Lyublin, Poland E-mail: <u>mario@elektron.pol.lublin.pl</u>

There are proposed the mechanisms of formation of the $n-Cd_{1-x}Zn_xTe$, $p-Cd_{1-x}Mn_{-x}Te$ solid solutions on the base of crystal-quasichemistry methods. The both concentration of the point defects and charge carriers are calculated.