УДК 539.23:537.311

ISSN 1729-4428

Д.М. Фреїк, А.М. Яцура

Дефектоутворення в чистих і легованих вісмутом плівках PbSe

Прикарпатський університет імені Василя Стефаника, кафедра фізики і хімії твердого тіла, вул. Галицька 201, м. Івано-Франківськ, 76000, Україна.

Запропоновані механізми дефектоутворення в плівках PbSe і PbSe:Ві, вирощених у відкритому вакуумі на сколах (111) ВаF₂. Показано, що якщо у чистих плівках домінує утворення міжвузлового свинцю; вакансій

селену, то у легованих – вісмут у катіонній (Bi_{Pb}) і аніонній (Bi_{Se}) підгратках.

Ключові слова: плівки, селенід свинцю, легування, дефекти.

Стаття поступила до редакції:05.10.2003; прийнята до друку:19.05.2004.

I. Вступ

Селенід свинцю привертає до себе увагу в зв'язку з використанням у приладових структурах, що функціонують в інфрачервоній області оптичного спектру [1,2] та термоелектричних перетворювачах енергії [3]. Він кристалізується з граткою типу NaCl із значними відхиленнями від стехіометричного складу і двосторонньою областю гомогенності [4]. Останнє є причиною значної концентрації власних атомних дефектів і різного типу провідності [5]. Вісмут – елемент V групи Періодичної таблиці – за своїм розміщенням відносно до сполук А^{IV}В^{VI} може заміщувати елементи як у катіонній, так і у аніонній підгратках. Він відноситься до р- елементів із конфігурацією валентних електронів 6s²6p³. Тому розміщуючись у катіонній підгратці основної матриці, в якій свинець має електронну конфігурацію 6s²6p², вісмут буде ефективним донором. У аніонній підгратці – вісмут акцептор (Te – 5s²5p⁴). Амфотерну роль домішки вісмуту в плівках і кристалах PbSe підтверджено в роботах [6-9]. Зараз залишається актуальною проблема визначення умов за яких вісмут стає донором чи акцептором.

У даній роботі виконано аналіз механізмів дефектоутворення у плівках PbSe в залежності від технологічних умов їх вирощування та легування вісмутом.

II. Методика експерименту і результати

Плівки одержували відкритим випаровуванням у вакуумі наважки із порошку наперед синтезованої чистої сполуки PbSe, а також легованої домішкою вісмуту (0,075 ат.%) згідно [6]. В якості підкладок використовували свіжі сколи по площині (111) кристалів BaF₂, температура яких змінювалась в інтервалі $T_{\Pi} = (500-650)$ К. Електричні параметри плівок вимірювали при кімнатній температурі компенсаційним методом у постійних електричних і

Рис. 1. Залежність концентрації носіїв струму і дефектів у чистих плівках PbSe від температури підкладки Тп. $n_{H}-1$, $\left[V_{Pb}^{2-}\right] - 2$, $\left[Pb_{i}^{+}\right] - 3$, $\left[V_{Se}^{2+}\right] - 4$, • – експеримент [6].

магнітних полях.

Експериментальні залежності концентрації носіїв струму плівок PbSe і PbSe:Ві від температури осадження наведені на рис. 1 і рис. 2 відповідно.

Рис. 2. Залежність концентрації носіїв струму і дефектів у легованих плівках PbSe:Bi.від температури підкладки Tn. $n_H - 1$, $[V_{Pb}^{2-}] - 2$, $[Pb_i^+] - 3$, $[Bi_{Se}^-] - 4$, $[Bi_{Pb}^+] - 5$, $[V_{Se}^{2+}] - 6$. • – експеримент [6].

Видно, що характер зміни холлівської концентрації для легованих плівок (рис. 2 – експеримент) суттєво відрізняється від нелегованих (рис. 1 – експеримент). Так, зокрема, при високих температурах осадження $T_{\Pi} = (550-650)$ К плівки PbSe:Ві мають діркову провідність (рис. 2 – експеримент). У нелегованих плівках PbSe у цьому інтервалі температур спостерігається зростання концентрації електронів (рис. 1 – експеримент).

III. Квазіхімічні рівняння утворення атомних дефектів

Механізми утворення дефектів у плівках, які визначають їх електричні властивості, зручно описати квазіхімічними рівняннями за крегером [10], використовуючи закон діючих мас.

Чисті плівки PbSe. Дефектний стан плівок PbSe, за умови рівноважності процесу, описується системою наступних квазіхімічних рівнянь (таблиця 1).

Тут реакція (1.1) перехід селену із пари (Se_2^V) в вузол аніонної підгратки (Se_{se}) з утворенням нейтральної вакансії свинцю (V_{Pb}^0) , а реакція (1.2) –

Таблиця 1

T/ · · · · ·	•	(T^{\prime})		1 .	•	D1 C
K BASIYIMIUHI DESKIIII	константи півноваги	(K) V7	гворення пе	THERE W	THIRKAY	PhNe
подалити пи реакци	, Koncrannin pibliobarn	(1) y 1	гворенни де	perilb y	плпркал	1000

N⁰	Реакції	Константа
n/n	,	
11/11		
1.1	$\frac{1}{2}\operatorname{Se}_{2}^{v}=\operatorname{Se}_{\operatorname{Se}}+\operatorname{V}_{\operatorname{Pb}}^{0}$	$K_{se} = \frac{[V_{Pb}^{0}]}{P_{se_2}^{1/2}}$
1.2	$Pb^{\nu} = Pb_i^+ + e^-$	$\mathbf{K}_{Pb} = \frac{[Pb_i^+] \cdot \mathbf{n}}{\mathbf{P}_{Pb}}$
1.3	$"0"=V_{Se}^0+V_{Pb}^0$	$\mathbf{K}_{Sh} = [\mathbf{V}_{Se}^0] \cdot [\mathbf{V}_{Pb}^0]$
1.4	$V_{Se}^{0} = V_{Se}^{2+} + 2 \cdot e^{-}$	$\mathbf{K}_{a}^{\prime} = \frac{[\mathbf{V}_{Se}^{2+}] \cdot \mathbf{n}^{2}}{[\mathbf{V}_{Se}^{0}]}$
1.5	$V^0_{Pb} = V^{2-}_{Pb} + 2 \cdot h^+$	$K_{b}^{'} = \frac{[V_{Pb}^{2-}] \cdot p^{2}}{[V_{Pb}^{0}]}$
1.6	$"0" = e^{-} + h^{+}$	$K_i = n \cdot p$

утворення міжвузлового свинцю (Pb_i^+) відповідно при температурі осадження T_n . Реакції (1.3), а також (1.4), (1.5) відповідають за рівноважний стан дефектів за Шотткі і їх іонізацію. Останнє рівняння (1.6) визначає власну провідність. Для цього випадку рівняння електронейтральності буде мати вигляд:

$$n + 2 \cdot [V_{Pb}^{2-}] = p + 2 \cdot [V_{Se}^{2+}] + [Pb_i^+]$$
(1)

Система рівнянь (1.1)-(1.6), а також (1) дає можливість знайти вирази для концентрації дефектів:

$$[V_{Pb}^{2-}] = \frac{[V_{Pb}^{0}] \cdot K_{b}^{\prime}}{p^{2}} = \frac{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot K_{b}^{\prime}}{p^{2}} = \frac{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot K_{b}^{\prime}}{K_{i}^{2}} n^{2};$$
$$[Pb_{i}^{+}] = \frac{P_{Pb} \cdot K_{Pb}}{n};$$

$$\begin{bmatrix} V_{Se}^{2+} \end{bmatrix} = \frac{\begin{bmatrix} V_{Se}^{0} \end{bmatrix} \cdot K_{a}^{\prime}}{n^{2}} = \frac{\begin{bmatrix} V_{Se}^{0} \end{bmatrix} \cdot K_{a}^{\prime}}{n^{2}} = \frac{K_{Sh} \cdot K_{a}^{\prime}}{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot n^{2}};$$
(2)
$$\begin{bmatrix} V_{Pb}^{0} \end{bmatrix} = K_{Se}(T) \cdot P_{Se_{2}}^{1/2};$$
$$\begin{bmatrix} V_{Se}^{0} \end{bmatrix} = \frac{K_{Sh}}{K_{Se} \cdot P_{Se_{2}}^{1/2}}.$$

Концентрацію електронів знайдемо, підставивши у рівняння електронейтральності (1) знайдені вирази для концентрації дефектів через константи рівноваги і парціальний тиск пари селену Р_{Se2} (2):

$$n+2\cdot\frac{K_{Se}\cdot P_{Se_{2}}^{1/2}\cdot K_{b}^{'}}{K_{i}^{2}}n^{2}=\frac{K_{i}}{n}+2\cdot\frac{K_{Sh}\cdot K_{a}^{'}}{K_{Se}\cdot P_{Se_{2}}^{1/2}\cdot n^{2}}+\frac{P_{Pb}\cdot K_{Pb}}{n},$$

)•	()) • P A+	r
N⁰	Константи	K ₀	ΔH , eB	Література
n/n				
1.1	$K_{Se} = \frac{[V_{Pb}^{0}]}{P_{Se_{2}}^{1/2}}$	1,57·10 ⁵⁸	0,49	[4]
1.2	$K_{Pb} = \frac{[Pb_i^+] \cdot n}{P_{Pb}}$	$1,73 \cdot 10^{27}$	-1,82	[4]
1.3	$\mathbf{K}_{\mathrm{Sh}} = [\mathbf{V}_{\mathrm{Se}}^{0}] \cdot [\mathbf{V}_{\mathrm{Pb}}^{0}]$	6,71·10 ³⁹	2,11	[4]
1.4	$K_{b}^{\prime} = \frac{[V_{Pb}^{2-}] \cdot p^{2}}{[V_{Pb}^{0}]}$	$4,5.10^{40}$	0,28	[5]
1.5	$\mathbf{K}_{\mathbf{a}}^{\prime} = \frac{[\mathbf{V}_{Se}^{2+}] \cdot \mathbf{n}^2}{[\mathbf{V}_{Se}^{0}]}$	$4,5.10^{40}$	0,28	[5]
1.6	$K_i = n \cdot p$	$1,13 \cdot 10^{40}$	0,59	[4]

Значення констант рівноваги $K = K_0 exp(-\Delta H/kT)$ і ентальпій (ΔH) утворення лефектів для PbSe

$$2 \cdot \frac{K_{Se} \cdot P_{Se_2}^{1/2} \cdot K_b'}{K_i^2} n^4 + n^3 - P_{Pb} \cdot K_{Pb} \cdot n - K_i \cdot n - 2 \cdot \frac{K_{Sh} \cdot K_a'}{K_{Se} \cdot P_{Se_2}^{1/2}} = 0.(3)$$

Леговані плівки PbSe:Bi. Дефектний стан легованих плівок PbSe:Ві, за умови амфотерної дії домішки, крім вище наведених рівнянь(1.1)-(1.6) (таблиця 1) буде визначатися додатковим квазіхімічним рівнянням:

$$\begin{split} \mathbf{B}i_{Pb}^{+} + \mathbf{V}_{Se}^{0} + \mathbf{e}^{-} &= \mathbf{B}i_{Se}^{-} + \mathbf{V}_{Pb}^{0} + \mathbf{h}^{+} ,\\ \mathbf{K}_{Bi} &= \begin{bmatrix} \mathbf{V}_{Pb}^{0} \\ \mathbf{V}_{Se}^{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{B}i_{Se}^{-} \\ \mathbf{B}i_{Pb}^{+} \end{bmatrix} \cdot \mathbf{n} \,. \end{split} \tag{1.7}$$

Враховуючи рівняння електронейтральності у випадку легованих плівок

 $n + 2 \cdot [V_{Pb}^{2-}] + [Bi_{Se}^{-}] = p + 2 \cdot [V_{Se}^{2+}] + [Bi_{Pb}^{+}] + [Pb_{i}^{+}], \quad (4)$ одержимо наступні вирази для концентрації дефектів і електронів (n):

$$\begin{split} [V_{Pb}^{2-}] &= \frac{[V_{Pb}^{0}] \cdot K_{b}^{\prime}}{p^{2}} = \frac{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot K_{b}^{\prime}}{p^{2}} = \frac{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot K_{b}^{\prime}}{K_{i}^{2}} n^{2} \\ & [Pb_{i}^{+}] = \frac{P_{Pb} \cdot K_{Pb}}{n}; \\ [V_{Se}^{2+}] &= \frac{[V_{Se}^{0}] \cdot K_{a}^{\prime}}{n^{2}} = \frac{[V_{Se}^{0}] \cdot K_{a}^{\prime}}{n^{2}} = \frac{K_{Sh} \cdot K_{a}^{\prime}}{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot n^{2}}; \\ [Bi_{Se}^{-}] &= \frac{N_{Bi}}{R+1}, [Bi_{Pb}^{+}] = \frac{R \cdot N_{Bi}}{R+1}, \\ de \qquad R &= \frac{K_{Se} \cdot P_{Se_{2}}^{1/2} \cdot K_{i}^{3}}{K_{b}^{\prime} \cdot K_{Sh} \cdot K_{Bi} \cdot n^{4}}; \\ [Bi_{Se}^{-}] &= \frac{N_{Bi}}{R+1}; \\ \end{split}$$

$$[\mathbf{B}\mathbf{i}_{\mathsf{Se}}^{-}] = \frac{\mathbf{N}_{\mathsf{Bi}}}{\frac{\mathbf{K}_{\mathsf{Se}} \cdot \mathbf{P}_{\mathsf{Se}_2}^{1/2} \cdot \mathbf{K}_{\mathsf{i}}^{3}}{\mathbf{K}_{\mathsf{b}}^{/} \cdot \mathbf{K}_{\mathsf{Sh}} \cdot \mathbf{K}_{\mathsf{Bi}} \cdot \mathbf{n}^{\mathsf{4}}} + 1}$$

Значення констант рівноваги і ентальпій утворення дефектів, які необхідні для проведення розрахунків наведено таблиці 2. у

Таблиця 2

$$\begin{split} [\mathrm{Bi}_{\mathrm{Pb}}^{+}] &= \frac{\mathrm{N}_{\mathrm{Bi}}}{\frac{K_{b}^{'} \cdot K_{\mathrm{Sh}} \cdot K_{\mathrm{Bi}} \cdot n^{4}}{K_{\mathrm{Se}} \cdot \mathrm{P}_{\mathrm{Se}2}^{1/2} \cdot \mathrm{K}_{\mathrm{i}}^{3}} + 1} \\ & [\mathrm{V}_{\mathrm{Pb}}^{0}] = \mathrm{K}_{\mathrm{Se}} \cdot \mathrm{P}_{\mathrm{Se}2}^{1/2}; \\ & [\mathrm{V}_{\mathrm{Se}}^{0}] = \frac{K_{\mathrm{Sh}}}{K_{\mathrm{Se}} \cdot \mathrm{P}_{\mathrm{Se}2}^{1/2}}; \\ & n + 2 \cdot \frac{\mathrm{K}_{\mathrm{Se}} \cdot \mathrm{P}_{\mathrm{Se}2}^{1/2} \cdot \mathrm{K}_{b}^{'}}{\mathrm{K}_{\mathrm{i}}^{2}} n^{2} + \frac{\mathrm{N}_{\mathrm{Bi}}}{\frac{K_{\mathrm{Se}} \cdot \mathrm{P}_{\mathrm{Se}2}^{1/2} \cdot \mathrm{K}_{\mathrm{i}}^{3}} + 1} \\ &= \frac{\mathrm{K}_{\mathrm{i}}}{n} + 2 \cdot \frac{\mathrm{K}_{\mathrm{Sh}} \cdot \mathrm{K}_{\mathrm{a}}^{'}}{\mathrm{K}_{\mathrm{Se}} \cdot \mathrm{P}_{\mathrm{Se}2}^{1/2} \cdot \mathrm{n}^{2}} + \frac{\mathrm{N}_{\mathrm{Bi}}}{\frac{\mathrm{K}_{b}^{'} \cdot \mathrm{K}_{\mathrm{Sh}} \cdot \mathrm{K}_{\mathrm{Bi}} \cdot \mathrm{n}^{4}}{\mathrm{K}_{\mathrm{b}}^{'} \cdot \mathrm{K}_{\mathrm{Sh}} \cdot \mathrm{K}_{\mathrm{Bi}} \cdot \mathrm{n}^{4}} + 1 \end{split}$$
(6)

Слід зауважити, що при розрахунках константи рівноваги утворення атомних дефектів для процесів (1.1)-(1.7) відповідають температурі осадження плівок. Крім того, вважали, що весь вісмут шихти перейшов у плівку і став іонізованим, тобто виконується співвідношення:

$$N_{Bi} = [Bi_{Se}^{-}] + [Bi_{Pb}^{+}].$$
(7)

Термодинамічний р-п перехід, що має місце для плівок PbSe:Ві при певному значенню температури осадження T_n^* і концентрації вісмуту $[Bi_{Se}^-]^*$ можна розрахувати за умови рівності концентрацій електронів і дірок (p = n).

$$2 \cdot \frac{K_{se}(T_{n}^{*}) \cdot P_{se_{2}}^{1/2} \cdot K_{b}^{\prime}(T_{n}^{*})}{K_{i}(T_{n}^{*})} + \frac{N_{Bi}}{\frac{K_{se}(T_{n}^{*}) \cdot P_{se_{2}}^{1/2} \cdot K_{i}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{sh}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1} = 2 \cdot \frac{K_{sh}(T_{n}^{*}) \cdot K_{a}^{\prime}(T_{n}^{*})}{K_{se}(T_{n}^{*}) \cdot P_{se_{2}}^{1/2} \cdot K_{i}(T_{n}^{*})} + \frac{N_{Bi}}{\frac{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{sh}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{sh}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1} = 2 \cdot \frac{K_{sh}(T_{n}^{*}) \cdot K_{a}^{\prime}(T_{n}^{*})}{K_{se}(T_{n}^{*}) \cdot P_{se_{2}}^{1/2} \cdot K_{i}(T_{n}^{*})} + \frac{N_{Bi}}{\frac{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{se}(T_{n}^{*}) \cdot K_{se}(T_{n}^{*}) \cdot P_{se_{2}}^{1/2} \cdot K_{i}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1 + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1 + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1 + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1 + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + 1 + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})} + \frac{N_{bi}^{\prime}(T_{n}^{*}) \cdot K_{bi}(T_{n}^{*})}{K_{b}^{$$

;

$$\left[\mathrm{Bi}_{\mathrm{se}}^{-}\right]^{*} = \frac{\mathrm{K}_{\mathrm{sh}}(\mathrm{T}_{\mathrm{n}}) \cdot \mathrm{K}_{\mathrm{a}}^{/}(\mathrm{T}_{\mathrm{n}})}{\mathrm{K}_{\mathrm{se}}(\mathrm{T}_{\mathrm{n}}) \cdot \mathrm{P}_{\mathrm{Se}_{2}}^{1/2} \cdot \mathrm{K}_{\mathrm{i}}(\mathrm{T}_{\mathrm{n}})} + \frac{1}{2} \mathrm{N}_{\mathrm{Bi}} + \frac{1}{2} \frac{\mathrm{P}_{\mathrm{pb}} \cdot \mathrm{K}_{\mathrm{pb}}(\mathrm{T}_{\mathrm{n}})}{\mathrm{K}_{\mathrm{i}}^{1/2}(\mathrm{T}_{\mathrm{n}})} - \frac{\mathrm{K}_{\mathrm{Se}}(\mathrm{T}_{\mathrm{n}}) \cdot \mathrm{P}_{\mathrm{Se}_{2}}^{1/2} \cdot \mathrm{K}_{\mathrm{b}}^{/}(\mathrm{T}_{\mathrm{n}})}{\mathrm{K}_{\mathrm{i}}(\mathrm{T}_{\mathrm{n}})}; \tag{8}$$

 $[Bi_{Pb}^{+}]^{*} = N_{Bi} - [Bi_{Se}^{-}]^{*}$.

Враховуючи, що холлівська концентрація $n_{\rm H}$, яка визначається на експерименті (рис. 1; рис. 2), рівна $n_{\rm H} = n$ -р, а також те, що згідно (1.6) (таблиця 1), $K_{\rm i} = n$ ·р одержимо вираз для її розрахунку на основі квазіхімічних рівнянь:

$$\mathbf{n}_{\mathrm{H}} = \mathbf{n} \left[\mathbf{l} - \mathbf{K}_{\mathrm{i}} (\mathbf{T}_{\mathrm{n}}) / \mathbf{n} \right]. \tag{9}$$

IV. Обговорення результатів досліджень

Результати проведених розрахунків концентрації дефектів і холлівської концентрації носіїв струму для плівок PbSe і PbSe:Ві від температури осадження наведено на рис. 1 і рис. 2 відповідно. Видно, що для чистих плівок PbSe (рис. 1) підвищення Тп обумовлює зменшення концентрації мізвузлового свинцю $|Pb_i^+|$ у всьому інтервалі зміни температури осадження (рис. 1 - крива 3). При цьому, якщо концентрація вакансій свинцю зменшується із підвищенням Т_п (рис. 1 – крива 2), то вакансії селену зростають (рис. 1 - крива 4). Для області низьких температур осадження Т_п = (500-570)К домінують атомні дефекти, пов'язані із міжвузловим свинцем Рb_i⁺, які і відповідальні за спостережуване зменшення холлівської концентрації носіїв струму n_н (рис.1 – крива1). В інтервалі високих Т_п = (580-650)К зростання $n_{_{\rm H}}$ обумовлене, в основному, донорними вакансіями селену $\left[V_{Se}^{2+}\right]$. Слід відзначити, що донорні дефекти – Рb_i⁺ і V_{Se}²⁺ – переважають над акцепторними (V_{Pb}^{2-}) для всього інтервалу зміни

Рис. 3. Залежність інтегрального коефіцієнта компенсації $F_0 = \frac{[V_{Se}^{2+}] + [Pb_i^+]}{[V_{Pb}^{2-}]}$ для чистих

плівок PbSe від температури підкладки Тп.

температур осадження. На це, зокрема, і вказує значення інтегрального коефіцієнта компенсації $\left[\left(V_{Se}^{2+}\right) + \left[Pb_{i}^{+}\right]\right) / \left[V_{Pb}^{2-}\right]$ (рис. 3).

3

У легованих плівках PbSe:Ві домінуючими є атомні дефекти, пов'язані із домішкою – (Bi_{Se}^{-}) і (Bi_{Pb}^{+}) . При цьому, якщо при температурах осадження $T_{n} = (500-550)$ К переважає вісмут у катіонній підгратці (Bi_{Pb}^{+}) , Який є донором (рис. 2-

сації $F_0 = \frac{[V_{Se}^{2+}] + [Bi_{Pb}^+] + [Pb_i^+]}{[V_{Pb}^{2-}] + [Bi_{Se}^-]}$ у легованих плівках Робе:Ві.від температури підкладки Тп.

Рис. 5. Залежність парціальних коефіцієнтів компенсації $F_1 = \frac{[V_{Se}^{2+}]}{[V_{Pb}^{2-}] + [Bi_{Se}^-]}, \quad F_2 = \frac{[Bi_{Pb}^+]}{[V_{Pb}^{2-}] + [Bi_{Se}^-]},$

 $F_3 = \frac{[Pb_i^+]}{[V_{Pb}^{2-}] + [Bi_{Se}^-]}$ для легованих плівок PbSe:Bi

від температури підкладки Тп.

крива 5), то при більш високих $T_n = (560-650) \text{ K}$ – вісмут у аніонній підгратці (Ві_{se}), який є акцептором (рис. 2 – крива 4). Концентрація інших дефектів

Рис. 6. Залежність парціальних коефіцієнтів компенсації $F_4 = \frac{[V_{Pb}^{2-}]}{[V_{Se}^{2+}] + [Bi_{Pb}^+] + [Pb_i^+]} \ F_5 = \frac{[Bi_{Se}^-]}{[V_{Se}^{2+}] + [Bi_{Pb}^+] + [Pb_i^+]} \ \text{для}$

легованих плівок PbSe:Ві.від температури підкладки Тп.

 $\left[V_{Se}^{2+}\right], \; \left[Pb_{i}^{+}\right]$ і $\left[V_{Pb}^{2-}\right]$ незначна і вони компенсуються. Наведені міркування підтверджуються значеннями інтегрального (рис. 4) і парціального (рис. 5, 6) коефіцієнтів компенсації. Так, зокрема, якщо значення відношення сили всіх донорних дефектів до акцепторних (рис. 4), а також їх парціальні значення (рис. 5) зменшуються із підвищенням температури осадження, то акцепторних – зростає (рис. 6). Концентрація нейтральних вакансій $\left[V_{Pb}^{0}\right]$ і $\left[V_{Se}^{0}\right]$ на декілька порядків менша ніж заряджених і складає $10^{11} - 10^{16}$

V. Висновки

Запропоновані механізми утворення атомних дефектів у чистих і легованих плівках селеніду свинцю, осаджених на сколах (111) ВаF₂ при відкритому випаровуванні в вакуумі.

Показано, що домунуючими дефектами у чистих плівках PbSe є міжвузлові атоми свинцю (Pb_i⁺) і вакансії селену (V_{Se}²⁺), які відповідальні за формування п-типу провідності при температурі осадження $T_n = (500-550)$ К і р-типу при $T_n = (560-$ 650) К відповідно.

У легованих плівках PbSe:Ві вісмут проявляє амфотерні властивості: при низьких температурах осадження переважають дефекти типу [Ві+] які формують матеріал n-типу, а при високих – |Ві_{se} які є акцепторами.

Фреїк Д.М. – доктор хімічних наук, професор, директор Фізико-хімічного інституту, завідувач кафедри фізики і хімії твердого тіла; **Яцура А.М.** – аспірант кафедри фізики і хімії твердого тіла.

- [1] Ю.И. Равич, В.А. Ефимова, В.А. Смирнова. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS. Hayka, M. 384 с. (1968).
- [2] H. Holloway. Thin films IV-VI semiconductor photodiodes // Physics thin films, New York 11, pp. 105-203 (1980).
- [3] В.М. Шперун, Д.М. Фреїк, Р.І. Запухляк. Термоелектрика телуриду свинию та його аналогів. Плай, Івано-Франківськ 250 с.(2000).
- [4] Н.Х. Абрикосов, Л.Е. Шелимова. Полуповодниковые материалы на основе соединений А^{IV}В^{VI}. Наука. М. 194 c. (1975).
- [5] Д.М. Фреїк, В.В. Прокопів, М.О. Галущак, М.В. Пиц, Г.Д. Матеїк. Кристалохімія і термодинаміка атомних дефектів у сполуках А^{IV}В^{VI}. Плай, Івано-Франківськ 164 с. (1999).
- [6] В.А. Зыков Т.А. Гаврикова, С.А. Немов. Амфотерное поведение висмута в пленках селенида свинца // Физика и техника полупроводников. 29(2) сс. 309-315 (1995).
- В.А. Зыков Т.А. Гаврикова, В.И. Ильин, С.А. Немов, П.В. Савинцев. Влияние примеси висмута на [7] концентрацию носителей тока в эпитаксионных слоях PbSe:Bi:Se // Физика и техника полупроводников, **35**(11), cc. 1311-1315 (2001).
- [8] Д.М. Фреїк, А.М. Яцура. Власні і домішкові атомні дефекти у легованих плівках селеніду свинцю // Фізика і хімія твердого тіла, 4(2), сс. 288-293 (2003).
- [9] А.М. Яцура. Амфотерна поведінка вісмуту у легованих плівках PbSe<Se>:Bi // Фізика і хімія твердого тіла, 4(3), сс. 510-514 (2003).
- [10] Ф. Крегер. Химия несовершенных кристаллов. Мир, М. 654 с. (1969).

D.M. Freik, A.M. Yatsura

Defects Formation in Clear and Doped by Bismuth PbSe Films

Prycarpathian University named Vasyl Stefanyk, Department of physics and chemistry of solid state 201, Galytska Str., Ivano-Frankivsk, 76000, Ukraine

Suggested the mechanisms of defects formation PbSe and PbSe:Bi films grew in open vacuum on (111) BaF_2 chips. It is demonstrated if formation of internodal lead and selenium vakancy dominate in clear films than in doped films dominate bismuth in cationic (Bi_{Pb}) and anionic (Bi_{Se}) subarrays.