УДК 535.15.34 : 546.65/546.289

ISSN 1729-4428

В.Ф. Зінченко, І.Р. Магунов, Г.В. Нечипоренко, І.В. Стоянова, Л.В. Садковська

Спектроскопічне дослідження взаємодії у системах Ge-In₂O₃-M_xO_v (M-Sn(IV), La, Sm, Eu)

Фізико-хімічний інститут ім. О.В. Богатського НАН України, 86 Люстдорфська дорога, м. Одеса, 65080, Україна, <u>vfzinchenko@ukr.net</u>

Методами спектроскопії пропускання у діапазоні 1200 - 200 см⁻¹ та спектроскопії дифузного відбиття у діапазоні 200-2500 нм досліджено характер взаємодії у системах Ge-In₂O₃, Ge-In₂SnO₅, Ge-LnInO₃ (Ln – La, Sm, Eu). Встановлено суттєву зміну у спектральних характеристиках систем з появою нових смуг та зникненням попередніх при прожарюванні композитів складу германій – оксид металу, що підтверджує факт окисно-відновної взаємодії між компонентами з утворенням летких продуктів, переважно In₂O та GeO. Термодинамічні розрахунки задовільно збігаються з експериментально встановленими значеннями умовних температур випаровування. Системи є перспективними для одержання тонкоплівкових покриттів інтерференційної оптики IЧ діапазону спектра.

Ключові слова: системи Германій – оксид металу, спектральні характеристики, взаємодія, термічне випаровування.

Стаття поступила до редакції 30.06.2017; прийнята до друку 05.09.2017.

Вступ

Системи складу Германій – халькогенід (оксид) металу останнім часом досліджуються в якості перспективних матеріалів для інтерференційної оптики ІЧ діапазону спектра [1-3]. Справа у тім, що багато з них виявляють властивості т.зв. CVD ("Chemical Vapor Deposition") – композитів, тобто є схильними до взаємодії у твердому стані з утворенням летких продуктів у вакуумі з наступною конденсацією на підкладці та утворенням наноструктурованного покриття. Детально CVDмеханізм випаровування та конденсації таких систем розглянуто раніше [4]. Серед компонентів CVDоксидів металів композитів, зокрема, було запропоновано GeO₂, SnO₂, ZnO [3, 5]. Одним з най перспективніших також видаються оксид Індію та сполуки на його основі через здатність до відновлення з утворенням летких оксидів In₂O та, ймовірно, InO [6].

Слід зазначити, що у багатьох випадках при взаємодії у СVD-композитах утворюються рентгеноаморфні продукти, які важко ідентифікувати стандартними методами, наприклад, рентгенівським фазовим аналізом (РФА). До таких, зокрема, відноситься й оксид Германію складу GeO, у якому Германій перебуває у формальному ступені

окиснення +2. Проте, насправді, він у твердому стані є метастабільним і, як правило, диспропорціонує на рентгеноаморфний германій й склоподібну матрицю GeO₂. Тому доцільно такого роду об'єкти досліджувати спектроскопічними методами, зокрема, методами ІЧ спектроскопії пропускання та (або) спектроскопії дифузного відбиття. Слід зазначити, що вихідні сполуки, а саме, індати лантанідів раніше [7] досліджено саме спектроскопічними методами. У рентгеноаморфних системах зазвичай спостерігається уширення й певний зсув (як правило, батохромний) смуг поглинання у ІЧ діапазоні. Крім того, в окремих випадках за сприятливого збігу розмірів часток та оптичних параметрів речовини композиту та матриці (KBr та CsI) виявляються осциляції на спектральних кривих поки що незрозумілої природи.

I. Методики синтезу та експериментального дослідження

Оксид Індію (III), $In_2O_3 - це сполука світло$ жовтого кольору, кристалізується у кубічній $структурі. Сполуку <math>In_2SnO_5$ одержували спільним осадженням амоніаком з розчину нітратів $In(NO_3)_3$ та $Sn(NO_3)_4$ з наступним прожарюванням при 600 -700°C [8]; структуру сполуки не вивчено. Індати

ле

лантанідів складу LnInO₃ (Ln - La, Sm, Eu) одержували спільним осадженням амоніаком з розчину нітратів, In(NO₃)₃ та Ln(NO₃)₃ з наступним прожарюванням одержаних гідроксидів при 1200 °С. Всі сполуки кристалізуються у структурі ромбічного перовськиту (D_{2h}^{16} -*Pbnm*). Параметри комірок закономірно зменшуються від LaInO₃ (a = 0,5772 нм) до EuInO₃ (a = 0,5567 нм) [9] через зменшення йонних радіусів Ln³⁺ (т.зв. лантанідне стиснення).

СVD-композити на основі систем Германію та зазначених оксидів готували шляхом спікання тонко розмелених порошків германію та відповідного оксиду у наступних співвідношеннях: Ge:In₂O₃ = 2:1; Ge:In₂SnO₅ = 3:1; Ge – LnInO₃ (Ln – La, Sm, Eu) = 1:1 при температурі, за якої процес вилітання летких компонентів щойно розпочався; термін витримки становив ~ 1 год. Прожарювання проводили у середовищі додатково очищеного аргону, причому зразок вміщувався у трубу з кварцового скла в одному й тому ж місці, яку, в свою чергу, поміщали у горизонтальну піч RHTC80-450 (виробництво фірми Nabertherm, Германія) з регульованим нагріванням.

IЧ спектри пропускання зразків, запресованих у матрицю попередньо зневодненого нагріванням при 180°С СsI кваліфікації *ос.ч.* (виробництво Інституту монокристалів НАН України, м. Харків) у масовому співвідношенні зразок : матриця, рівному 1:20, записували у діапазоні хвильових чисел (𝑘) 1200 - 200 см⁻¹. Запис спектрів проводили на спектрофотометрі з Фур'є – перетворенням Frontier (Perkin–Elmer, США).

Спектри дифузного відбиття (ДВ) у діапазоні довжин хвиль 200 - 2500 нм записували в координатах $F(R) = f(\lambda)$, де F(R) - функція Кубелки-Мунка, що описується рівнянням:

$$F(R) = \frac{(1-R)^2}{2R} = \frac{k}{s},$$
 (1)

де R – відносне відбиття зразка, k - коефіцієнт поглинання, s - коефіцієнт розсіювання, на

спектрофотометрі Lambda 9 (Регкіп Elmer, США) зі спеціальною приставкою у кюветах з товщиною шару досліджуваного порошкоподібного матеріалу 3 мм відносно зразка порівняння (MgO) в інтервалі довжин хвиль (λ) 200 - 2200 нм. Усі матеріали розтирали в агатовій ступці безпосередньо перед записом спектрів ДВ.

Термодинамічну оцінку процесів випаровування летких компонентів, що утворюються при прожарюванні, проводили за допомогою рівняння:

$$G^{o}_{T} = \Delta H^{o}_{T} - T_{y_{M}} \Delta S_{T} = 0, \qquad (2)$$

$$T_{y_{M}} - \text{умовна температура.}$$

Значення ΔH^{o}_{T} та ΔS_{T} , у свою чергу, розраховували за рівнянням:

$$\Delta H^{\bullet}_{T} = \Delta H^{\bullet}_{298} + \int_{0}^{1} \Delta C^{\circ}_{p} dT, \qquad (3)$$

$$\Delta S_{T} = \Delta S_{298}^{\bullet} + \int_{0}^{\infty} \frac{\Delta C_{p}(T)}{T} dT - R \ln \prod_{i=1}^{m} P_{i}^{v_{i}}, \qquad (4)$$

де ΔH^{o}_{T} , ΔS_{T} , ΔG_{T} – відповідно, ентальпія, ентропія та вільна енергія Гіббса процесу випаровування, ΔC^{o}_{p} – алгебраїчна сума теплоємностей продуктів (газуватих) та вихідних компонентів (твердих) CVD композиту, P_{i} – парціальні тиски газуватих продуктів випаровування при умові, що $\sum_{i=1}^{n} P_{i} \approx 10^{-5}$.

Експериментальне значення Т_{ум.}. визначали як середнє арифметичне значення між температурою, за якої почалася явна конденсація нальоту на холодних стінках реактора, та нижчою на 10 °C температурою, за якою проводилося спікання.

II. Результати та їх обговорення

Система Ge-In₂O_{3.}

Смуга поглинання в IЧ діапазоні In_2O_3 займає інтервал хвильових чисел $200 - 550 \text{ см}^{-1}$ (рис. 1, а, табл. 1). Після взаємодії між германієм та In_2O_3 при температурі 740 - 750 °C зазначена смуга майже

Рис. 1. IЧ спектри пропускання систем Германій-оксид металу у середньому й далекому IЧ діапазонах спектру: **a**: 1 – GeO₂, 2 – In₂O₃, 3 – Ge-In₂O₃, 4 – In₂SnO₅, 5 – Ge-In₂SnO₅; **б**: 1 – LaInO₃, 2 – Ge-LaInO₃, 3 – SmInO₃, 4 – Ge-SmInO₃, 5 – EuInO₃, 6 – Ge-EuInO₃.

Оксид, система	$\widetilde{\mathbf{v}}$, cm ⁻¹															
In ₂ O ₃							666.6		540.1	502.9	427.3	383.0	332.7	270.3	234.5	219.3
Ge–In ₂ O ₃		960.3	878.1				664.9	586.9	548.7	518.2	512.4		343.5		251.6	210.2
GeO ₂		961.3	875.1				668.0	586.2	552.1	516.8			333.5		251.1	210.8
In_2SnO_5							614.5	566.0	539.1		485.9	371.4	329.8	307.0	261.7	
Ge–In ₂ SnO ₅	1025.1	961.5	873.8	754.4					549.2	512.4	440.8	434.8	334.9			214.9
LaInO ₃	1063.3		855.0	749.5	694.8	655.1	601.6	564.1	524.1			422.7	346.8			
Ge–LaInO ₃	1026.5		859.2	755.3			600.9	564.2		518.9	413.7	343.1	335.1			207.1
SmInO ₃							573.8	564.2	537.8		410.0	378.9	335.5	267.5	238.9	207.1
Ge–SmInO ₃	1026.3			755.5	699.7		573.2		536.0		410.9	383.0	341.5	267.3	238.9	227.1
EuInO ₃				730.8	675.6		597.3	536.4	539.6		450.9	368.6			230.1	207.2
Ge–EuInO ₃		961.5	871.9	726.8		657.5	597.3	564.2	539.6		455.5	368.6			227.1	210.2

Положення смуг поглинання у ІЧ спектрах систем Германій – оксид

Спектроскопічне дослідження взаємодії...

Таблиця 1

Рис. 2. Спектри дифузного відбиття систем Германій-оксид металу в УФ (а) та ближньому ІЧ (б) діапазонах спектру: 1 – In₂O₃, 2 – Ge-In₂O₃, 3 – In₂SnO₅, 4 – Ge-In₂SnO₅.

цілковито зникає і замінюється на спектр, дуже схожий на такий для GeO₂ гексагональної модифікації (рис. 1, криві 1, 3) з характерними смугами при $\tilde{v} \sim 880 \text{ см}^{-1}$ (валентні коливання зв'язків Ge-O), а також при 450 – 550 см⁻¹ (деформаційні коливання зв'язків Ge-O). Очевидно, це є результатом взаємодії за схемою:

$$\operatorname{Ge}(T) + \operatorname{In}_2\operatorname{O}_3(T) \xrightarrow{t} \operatorname{GeO}_2(T) + \operatorname{In}_2\operatorname{O}(\Gamma).$$
 (5)

Також може відбуватися додатковий процес за іншим рівнянням:

$$2\text{Ge}(r) + \text{In}_2\text{O}_3(r) \xrightarrow{t} 2\text{GeO}(r) + \text{In}_2\text{O}(r).$$
 (6)

Підтвердженням можливості останньої схеми є поява у ІЧ спектрі продуктів реакції характерних для GeO осциляцій у діапазоні 200 – 600 см⁻¹. До речі, схема (5) є ближчою до типового CVD - процесу. На користь перебігу реакцій свідчать спектри дифузного відбиття (рис. 2, а). Дійсно, замість спектра In_2O_3 з "хвостом" у синій області (450 – 500 нм), у видимому й ближньому ІЧ діапазонах F(R) продуктів з'являється слабко структурована смуга суцільного поглинання.

Система Ge-In₂SnO_{5.}

IЧ спектр пропускання In_2SnO_5 являє собою широку, суцільну область зі смугами поглинання, що поєднують у собі спектральні характеристики In_2O_3 та SnO_2 (рис. 1, а). Проте, після прожарювання суміші компонентів (температура є дещо нижчою, ніж у попередній системі, а саме, 720 - 730 °C) спектр суттєво змінюється: з'являються нові смуги, зокрема, з максимумами при 1025 та 754 см⁻¹, які не належать жодній модифікації GeO₂. Їх розташування є більш властивим для германатів (скоріш за усе, метагерманатів). Тому можна записати схему процесу у наступному вигляді:

$2\text{Ge}(T) + \text{In}_2\text{SnO}_5(T) \xrightarrow{t}$

 $\xrightarrow{t} SnGeO_3(r) + GeO(r) + In_2O(r)$ (7)

Про наявність GeO у продуктах реакції свідчать характерні осциляції на IЧ спектрі у діапазоні 200 – 600 см^{-1} . Таким чином, у даній реакції, ймовірно має місце окиснення Ge до Ge(IV) та Ge(II) й відновлення In(III) до In(I) та Sn(IV) до Sn(II). За стехіометрією та фазовим станом продуктів взаємодії зазначена система частково відповідає вимогам, що ставляться до CVD - композитів.

Спектр дифузного відбиття системи відображує багатокомпонентний склад і розмаїття валентних станів продуктів взаємодії і є малоінформативним (рис. 2, а).

Системи Ge-LnInO₃ (Ln – La, Sm, Eu).

Система Ge-LaInO₃

В ІЧ спектрах пропускання вихідної сполуки, LaInO₃ проявляються смуги поглинання в області 750 – 1060 см⁻¹, зобов'язані своєю появою валентним коливанням зв'язків Si–O та деформаційним коливанням зв'язків C–O у $\rm CO_3^{2-}$ – групах, що ε домішковими до основної фази. Смуги у діапазоні 520 – 695 см⁻¹, скоріш за усе, відображають валентні коливання зв'язків In-O, у той час, як смуги при 347 та 423 см⁻¹ – валентні коливання зв'язків La-O. Взаємодія з Германієм не вносить суттєвих змін у загальну спектральну картину, лише виникають характерні смуги при 755 та 1026 см⁻¹, що проявляються й у системі Ge-SmInO₃ (рис. 1, б, табл. 1). Спектр ДВ системи є маловиразним в усьому діапазоні; виняток, як й для решти систем, становить УФ діапазон, у якому виявляються інтенсивні смуги поглинання завдяки електронним переходам $O^{2-} \rightarrow In^{3+}$ та $In^+ \rightarrow In^{3+}$ (рис. 3).

Рис. 3. Спектри дифузного відбиття систем Германій-індат лантаніду в УФ (а) та ближньому ІЧ (б) діапазонах спектру: 1 – LaInO₃, 2 – Ge-LaInO₃, 3 – SmInO₃, 4 – Ge-SmInO₃, 5 – EuInO₃, 6 – Ge-EuInO₃

У даній системі, очевидно, відбуваються частково окисно-відновні процеси за схемою:

$$Ge(T) + 2LaInO_3(T) \xrightarrow{L} La_2GeO_5(T) + In_2O(\Gamma),$$
 (8)

із збереженням значної частини вихідних компонентів.

Система Ge-SmInO₃

IЧ спектр вихідної сполуки, SmInO₃, на відміну від LaInO₃, не мстить смуг, що відповідають домішковим фазам, в області 600-1060 см⁻¹ (рис. 1, б). Натомість смуги, зумовлені валентними коливаннями зв'язків In–O (410 – 574 см⁻¹) та Sm–O (239 – 379 см⁻¹), зберігаються й після взаємодії між Ge та SmInO₃. В останньому має місце виникнення нових смуг поглинання при 755 та 1026 см⁻¹, очевидно, через утворення ортогерманату складу Sm₂GeO₅ за схемою, аналогічною попередній:

 $Ge(T) + 2SmInO_3(T) \xrightarrow{t} Sm_2GeO_3(T) + In_2O(\Gamma),$ (9)

Досить виразними є спектри ДВ (рис. 3) даної системи у видимому й, особливо, ближньому ІЧ діапазонах спектру. На них чітко виявляються смуги поглинання при довжинах хвиль 450 нм та 900-1700 нм, що своєю появою зобов'язані внутрішньоцентровим 4f-4f переходам у йонах Sm^{3+} . Спостерігається суттєве (~ у 1,5 рази) зниження інтенсивності зазначених смуг, ймовірно, через розведення вихідної сполуки германієм при суттєвому зростанні фонового поглинання. Слід зазначити факт виникнення додаткових смуг при 850 та 2200-2300 нм, можливо, за рахунок появи незначної кількості Sm²⁺ [10] (рис. 3, б).

Система Ge-EuInO₃

Характерною особливістю ІЧ спектрів зразків даної системи, крім наявності смуг поглинання за

рахунок валентних коливань зв'язків In-O (450-675 см⁻¹) та Еu-O (369 см⁻¹), є смуги поглинання завдяки деформаційним коливанням С–О (групи CO₃^{2–}) при 727–731 см⁻¹, які не зникають й після термообробки (рис. 1, б). У той же час, певною несподіванкою виглядає поява двох смуг при 962 та 872 см⁻¹, характерних для GeO₂ (гекс.), після взаємодії між Ge та EuInO₃. Додаткову інформацію надають спектри ДВ зразків системи (рис. 3). Особливо виразними виглядають зміни, шо відбуваються після взаємодії з Германієм, в УФ діапазоні спектру: замість характерної для індатів лантанідів достатньо розмитої смуги виникають дві добре розділені смуги поглинання при довжинах хвиль 210 - 250 нм та 350 - 450 нм (з максимумом поблизу 400 нм). Така картина є характерною для оксидних сполук Eu(II), зокрема, Eu₂SiO₄ [9]. Вона обумовлена 4f-5d електронними переходами у йонах Eu^2 в оксидній матриці. Суттєві зміни спостерігаються й у ближньому ІЧ діапазоні спектра. Те, що суттєво зростає загальний фон поглинання, не є дивним через наявність германію. У той же час значно (~ у 2 - 2,5 рази) знижується інтенсивність смуги, що завдячує внутрішньоцентровим 4f-4f електронним переходам у йонах Eu³⁺ в області 2100 -2400 нм. Крім власне розведення за рахунок добавки германію, важливу роль у даному випадку, очевидно, відіграє процес відновлення йонів Eu³⁺ до Eu²⁺ за можливою схемою:

$$2Ge(T) + 2EuInO_3(T) \xrightarrow{t} Eu_2GeO_4(T) + GeO(T) + In_2O(T),$$
(10)

За аналогією до Eu₂SiO₄, що має гексагональну структуру, можна вважати певну структурну

Таблиця	2
---------	---

Система	Рівняння реакції	Т _{ум.} (поява нальоту), °С	ΔН° ₂₉₈ , кДж/моль	ΔS ₂₉₈ , Дж/моль К	T _{posp.} , °C
Ge-In ₂ O ₃ (2:1)	$\operatorname{Ge}(T) + \operatorname{In}_2\operatorname{O}_3(T) \xrightarrow{t} \operatorname{In}_2\operatorname{O}(\Gamma) + \operatorname{GeO}_2(T)$	745	316	308	753
$\begin{array}{c} \text{Ge-In}_2\text{SnO}_5\\ (3:1) \end{array}$	$2Ge(T) + In_2SnO_5(T) \xrightarrow{t} In_2O(\Gamma) + GeO(\Gamma) + SnGeO_3(T)$	725	365	366	724
Ge-LaInO ₃ (1:1)	$Ge(t) + 2LaInO_3(t) \xrightarrow{t} In_2O(t) + La_2GeO_5(t)$	715	291	309	710
Ge-SmInO ₃ (1:1)	$\begin{array}{c} \operatorname{Ge}(\tau) + 2\operatorname{SmInO}_{3}(\tau) \xrightarrow{t} \\ \operatorname{In}_{2}O(\tau) + \operatorname{Sm}_{2}\operatorname{GeO}_{5}(\tau) \end{array}$	765	322	309	769
Ge-EuInO ₃ (1:1)	$2Ge(\tau) + 2EuInO_{3}(\tau) \xrightarrow{t} Eu_{2}GeO_{4}(\tau) + In_{2}O(\tau) + GeO(\tau)$	705	357	362	713

Термодинаміка процесів у системах Германій – оксид металу

подібність Eu₂GeO₄ до GeO₂ (гекс.) й за IЧ спектром. Таким чином, взаємодія у системі Ge-EuInO₃ має суттєво відрізнятися від такої у аналогічних системах з індатами лантанідів.

Температури вилітання (Т_{ум.}), визначені експериментально (за конденсацією пари чорнобурого кольору на прохолодних ділянках реактора), лежать у межах 700-770°С. При цьому найвищим є значення температури у випадку системи Ge-SmInO₃, а найнижчим – для системи Ge-EuInO₃. Цей факт видається досить дивним, оскільки Sm і Eu є сусідніми елементами у лантанідному ряді. Суть полягає у різній здатності сполук лантанідів у ступені окиснення +3 до відновлення. Так, Eu(III) здатен достатньо легко відновлюватися до Eu(II). Натомість Sm(III) потрібен відновлення достатньо для потужний відновник. У свою чергу, елементний германій окиснюється, як правило, за цих умов до Ge(IV), у той час, як In(III) завжди відновлюється до In(I).

За здатністю до утворення складних оксидів металів та Ge(IV) можна записати ряд [11]: Eu(II) > La(III) >Sm(III) > Sn(II). Оскільки у випадку системи Ge-EuInO₃ (як, до речі, й для системи Ge-In₂SnO₅) до того ж має утворюватися дві леткі сполуки (GeO та In₂O), то дана система, очевидно, матиме переваги щодо леткості компонентів. Дійсно, T_{yM} для неї є найнижчою серед усіх систем даного типу (табл. 2). Дещо нижчий за леткістю і вищий за T_{yM} щабель посідає система Ge-LaInO₃. Термодинамічні розрахунки дають значення температур, вельми близькі до експериментальних величин.

Висновки

1. Проведено дослідження систем Ge – оксид металу на предмет виявлення перспективних CVD - композитів для нанесення покриттів інтерференційної оптики IЧ діапазону спектру.

2. Спектроскопічними методами (ІЧ спектроскопія пропускання та електронна спектроскопія дифузного відбиття) встановлено характер взаємодії у системах Ge-(-In₂O₃, -In₂SnO₅, -LnInO₃ (Ln – La, Sm, Eu), що полягає у окисновідновних реакціях між компонентами систем та наступній взаємодії між продуктами з утворенням нових складних оксидів та летких сполук.

3. Оцінка леткості утворюваних сполук (In_2O та GeO) та зсуву рівноваги за умовною температурою вказує на перспективність системи Ge – EuInO₃ для застосування в якості матеріалу для IU оптики.

Зінченко В.Ф. - професор, доктор хімічних наук, завідувач відділу хімії функціональних неорганічних матеріалів;

Магунов І.Р. – кандидат хімічних наук, старший науковий співробітник відділу хімії функціональних неорганічних матеріалів;

Нечипоренко Г.В. - кандидат хімічних наук, науковий співробітник відділу хімії функціональних неорганічних матеріалів;

Стоянова І.В. - кандидат хімічних наук, старший науковий співробітник відділу аналітичної хімії та фізико-хімії координаційних сполук;

Садковська Л.В. – провідний інженер відділу хімії функціональних неорганічних матеріалів.

- [1] В.Ф. Зінченко, Г.І. Кочерба, І.Р. Магунов, О.В. Мозкова, В.П. Соболь, Н.М. Бєлявіна, Фізика і хімія твердого тіла 12(2), 433(2011).
- [2] В.Ф. Зінченко, В.Е. Чигринов, О.В. Мозкова, І.Р. Магунов, Є.В. Тімухін, Л.В. Садковська, Фізика і хімія твердого тіла 13(3), 785(2012).
- [3] V.F. Zinchenko, V.E. Chygrynov, O.V. Mozkova, I.R. Magunov, I.P. Kovalevska, Physics and Chemistry of Solid State 15(3), 579(2014).
- [4] В.Ф. Зінченко, В.Е. Чигринов, Є.В. Тімухін, Фізика і хімія твердого тіла 16(2), 307(2015).
- [5] В.Ф. Зінченко, В.Е. Чигринов, О.В. Мозкова, І.Р. Магунов, Л.В. Садковська, Український хімічний журнал 79(9), 91(2013).
- [6] П.И. Федоров, М.В. Мохосоев., Ф.П. Алексеев, Химия галлия, индия и таллия (Новосибирск, Наука, 1977).
- [7] Н.В. Поротников, О.И. Кондратов, К.И. Петров, О.В. Сидорова, Журнал неорганической химии 25(12), 3224(1980).
- [8] М.Б. Варфоломеев, А.С. Миронова, Ф.Х. Чибирова, В.Е. Плющев, Известия АН СССР, Неорганические материалы 11(12), 2242(1975).
- [9] К.И. Портной, Н.И. Тимофеева, Кислородные соединения редкоземельных элементов. Справочное издание (Металлургия, Москва, 1986).
- [10] Д.Т. Свиридов, Р.К. Свиридова, Ю.Ф. Смирнов, Оптические спектры ионов переходных металлов в кристаллах (Наука, Москва, 1976).
- [11] В.Ф. Зинченко, В.В. Менчук, В.П. Антонович, Е.В. Тимухин, Кислотно-основные свойства неорганических соединений (Одесский национальный университет имени И.И. Мечникова, Одесса, 2016).

V.F. Zinchenko, I.R. Magunov, G.V. Nechyporenko, I.V. Stoyanova, L.V. Sadkovska

Spectroscopic research of interaction in the systems Ge-In₂O₃-M_xO_y (M-Sn(IV), La, Sm, Eu)

A.V. Bogatsky Physico-Chemical Institute of NAS of Ukraine, 86 Lustdorfska Doroga Str., 65080, Odesa, Ukraine, e-mail: <u>vfzinchenko@ukr.net</u>

Methods of IR transarency spectroscopy in a range of 1200-200 cm⁻¹ and diffuse reflectance spectroscopy in a range of 200-2500 nanometers investigated character of interaction in the systems Ge-In₂O₃, Ge-In₂SnO₅, Ge-InInO₃ (Ln - La, Sm, Eu). These methods are most used ones in a case of CVD (Chemical Vapor Deposition) composite and coatings obtained from them and which have predominantly x-ray amorphous nature. Essential change in spectral characteristics of systems with the appearance of new bands and disappearance of previous ones is established at annealing of composites Germany - metal oxide composition which confirms the fact of oxidation-reduction interaction between components with formation of volatile products, mainly In₂O and GeO. Besides, in the system Ge-In₂O₃ formation of Eu(II) compound, presumably, Eu₂GeO₄ is revealed. The last exhibits itself due to two narrow bands in an UV-visible (220 and 400 nm) intervals of spectrum characteristic for complex oxide Eu(II) compounds. Residual amounts of Eu(III) reveals due to slightly expressed bands in a near IR interval (1900-2400 nm) of a spectrum, their intensity being significantly decreased after thermal annealing. Experimentally observed and thermodynamically calculated values of T_c, where T_c is conditional temperature of the obvious beginning of evaporation of the samples, well coincide one with another (700-750°C). Systems are perspective for obtaining thin-film coatings for interference optics of an IR range of a spectrum.

Keywords: the system Germany - metal oxide, spectral characteristics, interaction, thermal evaporation.