УДК 539.3

ISSN 1729-4428

А.В. Павлюк

Динаміка тришарової циліндричної оболонки еліптичного перерізу з поздовжньо-поперечним ребристим дискретним наповнювачем

Інститут механіки Національної академії наук України ім. С.П. Тимошенка, вул. Нестерова 3, 03057, Київ, Україна, <u>aniutapavliuk@gmail.com</u>

В роботі розглядаються рівняння неосесиметричних коливань дискретно підкріплених тришарових циліндричних оболонок еліптичного перерізу. При аналізі елементів пружної структури використовується уточнююча модель теорії оболонок і стержнів типу Тимошенка. Досліджено задачу динамічної поведінки тришарової поздовжньо-поперечної підкріпленої циліндричної оболонки еліптичного перерізу при розподіленому нестаціонарному навантаженні.

Ключові слова: тришарова циліндрична оболонка, еліптичний переріз, теорія типу Тимошенка, вимушені коливання, чисельний розв'язок.

Стаття поступила до редакції 07.05.2017; прийнята до друку 05.06.2017.

Вступ

Оцінка напружено-деформованого стану тришарових циліндричних оболонок з дискретним ребристим наповнювачем є досить складною задачею, розв'язання якої вимагає розвитку певних теоретичних моделей шаруватих пластин і оболонок. Реалізація цих моделей викликає необхідність вдосконалення і розробки ефективних чисельних розрахунку зазначених методів елементів конструкцій. Складність побудови механічних моделей багатошарових оболонок і застосування принципово різних кінематичних і статичних гіпотез значної призводить до різноманітності розрахункових схем і рівнянь [1 – 22]. Відомо, що при побудові варіантів багатошарових оболонок існує два основних підходи побудови математичних моделей, які засновані на використанні єдиних гіпотез до всього пакету [3, 5, 7 - 11, 14 - 22] і гіпотез, які враховують кінематичні і статичні особливості кожного шару [1, 6]. Відповідно до термінології, запропонованої в [3, 6], моделі і теорії другого підходу отримали назву «дискретноструктурних» при розгляді тришарових оболонок з наповнювачем ребристим також справедливі зазначені підходи – конструктивно-ортотропна модель тришарових оболонок і модель з урахуванням дискретного розташування елементів заповнювача. В рамках другого підходу розглянуті осесиметричні і

неосесиметричні коливання тришарових оболонок з ребристим наповнювачем при нестаціонарних навантаженнях [11, 12].

I. Постановка проблеми

Розглядається тришарова циліндрична оболонка еліптичного перерізу з дискретним поздовжньопоперечним ребристим заповнювачем при дії внутрішнього розподіленого нестаціонарного Неоднорідна тришарова пружна навантаження. структура являє собою дві циліндричні оболонки еліптичного перерізу (внутрішня і зовнішня обшивки), які жорстко з'єднані між собою системою поздовжніх та поперечних дискретних ребер. уявлення вихідної Схематичне конструкції представлено на рис. 1.

Коефіцієнти першої квадратичної форми і кривизни координатної поверхні вихідних оболонок приймаємо наступним чином

$$A_{1} = 1, k_{2} = 0,$$
(1)

$$A_{2} = (a_{k}^{2} \cos^{2} a_{2} + b_{k}^{2} \sin^{2} a_{2})^{1/2},$$

$$k_{2} = a_{k} b_{k} (a_{k}^{2} \cos^{2} a_{2} + b_{k}^{2} \sin^{2} a_{2})^{-3/2}, k=1,2;$$

де a_k и b_k – півосі еліпса, який характеризує поперечний переріз відповідної циліндричної оболонки.

Рис. 1. Схематичне представлення тришарової циліндричної оболонки еліптичного перерізу з дискретним поздовжньо-поперечним ребристим наповнювачем.

Прийнято, що деформований стан внутрішньої і зовнішньої обшивок (відповідно індекси 1 і 2) може бути визначено узагальненими векторами переміщень відповідних серединних поверхонь $\overline{U}_{1} = (u_{1}^{1}, u_{2}^{1}, u_{3}^{1}, j_{1}^{1}, j_{2}^{1})^{T}$ i $\overline{U}_2 = (u_1^2, u_2^2, u_3^2, j_1^2, j_2^2)^T$. При розгляді елементів дискретного наповнювача покладається, що деформований стан ребра, що направлене вздовж осі а, визначається вектором переміщення лінії центру ваги поперечного перерізу *i-*го ребра $\overline{U}_{i} = (u_{1i}, u_{2i}, u_{3i}, j_{1i}, j_{2i}),$ а деформований стан поперечного ј-го ребра, що направлене вздовж осі a_2 може бути визначено узагальненим вектором переміщень $\overline{U}_{j} = (u_{1j}, u_{2j}, u_{3j}, j_{1j}, j_{2j})^{T} [2, 11].$

Для виведення рівнянь коливань тришарової пружною структури з дискретним наповнювачем використовується варіаційний принцип стаціонарності Гамільтона – Остроградського [2]. Після стандартних перетворень в варіаційному рівнянні, з врахуванням виразів для потенціальної і кінетичної енергій для обшивок і ребер згідно [2,11], отримуємо дві групи рівнянь. Рівняння коливань тришарової циліндричної оболонки еліптичного перерізу з врахуванням дискретності поздовжньопоперечного заповнювача записуються у вигляді:

- для внутрішньої і зовнішньої обшивок:

$$\frac{\partial T_{11}^{k}}{\partial s_{1}} + \frac{\partial S^{k}}{\partial s_{2}} = r_{k}h_{k}\frac{\partial^{2}u_{1}^{k}}{\partial t^{2}};$$

$$\frac{\partial S^{k}}{\partial s_{1}} + \frac{\partial T_{22}^{k}}{\partial s_{2}} + k_{2}T_{23}^{k} = r_{k}h_{k}\frac{\partial^{2}u_{2}^{k}}{\partial t^{2}};$$

$$\frac{\partial T_{13}^{k}}{\partial s_{1}} + \frac{\partial T_{23}^{k}}{\partial s_{2}} - k_{2}T_{22}^{k} + P_{3}^{k}(s_{1}, s_{2}, t) = r_{k}h_{k}\frac{\partial^{2}u_{3}^{k}}{\partial t^{2}};$$

$$\frac{\partial M_{11}^{k}}{\partial s_{1}} + \frac{\partial H^{k}}{\partial s_{2}} - T_{13}^{k} = r_{k}\frac{h_{k}^{3}}{12}\frac{\partial^{2}j_{1}^{k}}{\partial t^{2}};$$

$$\frac{\partial H^{k}}{\partial s_{1}} + \frac{\partial M_{22}^{k}}{\partial s_{2}} - T_{23}^{k} = r_{k}\frac{h_{k}^{3}}{12}\frac{\partial^{2}j_{2}^{k}}{\partial t^{2}}; \quad k = 1, 2;$$

- для *i*-го поздовжнього ребра:

$$[S]_{i} + \frac{\partial T_{11i}}{\partial s_{1}} = \mathbf{r}_{i} F_{i} \frac{\partial^{2} u_{1i}}{\partial t^{2}};$$

$$[T_{22}]_{i} + \frac{\partial T_{12i}}{\partial s_{1}} = \mathbf{r}_{i} F_{i} \frac{\partial^{2} u_{2i}}{\partial t^{2}};$$

$$[T_{23}]_{i} + \frac{\partial T_{13i}}{\partial s_{1}} = \mathbf{r}_{i} F_{i} \frac{\partial^{2} u_{3i}}{\partial t^{2}};$$

$$[H]_{i} + \frac{\partial M_{11i}}{\partial s_{1}} - T_{13i} = \mathbf{r}_{i} I_{1i} \frac{\partial^{2} j_{1i}}{\partial t^{2}};$$

$$[M_{22}]_{i} + \frac{\partial M_{12i}}{\partial s_{i}} = \mathbf{r}_{i} I_{kri} \frac{\partial^{2} j_{2i}}{\partial t^{2}}; i = \overline{1, I}.$$
(3)

- 1

У співвідношеннях (3) величини типу $[S]_i, [T_{22}]_i, [T_{23}]_i, [H]_i, [M_{22}]_i$ відповідають сумарним значенням зусиль-моментів зовнішньої і внутрішньої обшивок, які діють на і-й дискретний елемент заповнювача.

для *j*-го поперечного ребра

$$\frac{\partial T_{21j}}{\partial s_2} + [T_{11}]_j = \mathbf{r}_j F_j \left(\frac{\partial^2 u_1}{\partial t^2} \pm h_{cj} \frac{\partial^2 j_1}{\partial t^2} \right), \quad (4)$$

$$\frac{\partial T_{22j}}{\partial s_2} + k_{2j} T_{23j} + [S]_j = \mathbf{r}_j F_j \left(\frac{\partial^2 u_2}{\partial t^2} \pm h_{cj} \frac{\partial^2 j_2}{\partial t^2} \right),$$

$$\frac{\partial T_{23j}}{\partial s_2} - k_{2j} T_{22j} + [T_{13}]_j = \mathbf{r}_j F_j \frac{\partial^2 u_3}{\partial t^2},$$

$$\frac{\partial M_{21j}}{\partial s_2} \pm h_{cj} \frac{\partial T_{21j}}{\partial s_2} + [M_{11}]_j = \mathbf{r}_j F_j \left(\pm h_{cj} \frac{\partial^2 u_1}{\partial t^2} + \left(h_{cj}^2 + \frac{I_{crj}}{F_j} \right) \frac{\partial^2 j_1}{\partial t^2} \right)$$

$$\frac{\partial M_{22j}}{\partial s_2} - T_{23j} \pm h_{cj} \left(\frac{\partial T_{22j}}{\partial s_2} + k_{2j} T_{23j} \right) + [H]_j =$$

$$= \mathbf{r}_j F_j \left(\pm h_{cj} \frac{\partial^2 u_2}{\partial t^2} + \left(h_{cj}^2 + \frac{I_{2j}}{F_j} \right) \frac{\partial^2 j_2}{\partial t^2} \right)$$

В рівняннях коливань дискретно підкріплюючих ребер (4) позначення типу [S] _j відповідають сумарній дії величин зусиль – моментів гладкої циліндричної оболонки еліптичного перерізу на *j*-те

підкріплююче ребро.

У рівняннях (2) – (4) u_1, u_2, u_3, j_1, j_2 – компоненти узагальненого вектора переміщень серединної поверхні оболонки; r, r_i, r_j щільності матеріалу оболонки і-го, ј-го ребер відповідно; h товщина оболонки; $h_{ci} = 0.5(h + h_i); h_i$ – висота поперечного перерізу *i*-го ребра; $h_{ci} = 0,5(h+h_i);$ h_i – висота поперечного перерізу *j*-го ребра. Величини $[f]_i = f^+ - f^-$, де f^{\pm} – значення функцій праворуч і ліворуч на і-й лінії розриву (лінія проектування центру ваги *i*-го ребра на серединну поверхню циліндричної оболонки). Відповідно визначаються величини $[f]_i = f^+ - f^-$.

Величини зусиль-моментів в рівняннях коливань для оболонки (2) пов'язані з відповідними величинами деформацій наступними співвідношеннями

$$T_{11} = B_{11}(e_{11} + n_2 e_{22}), \quad T_{22} = B_{22}(e_{22} + n_1 e_{11}), \quad (5)$$

$$T_{13} = B_{13}e_{13}, \quad T_{23} = B_{23}e_{23}, \quad S = B_{12}e_{12}, \quad M_{11} = D_{11}(k_{11} + n_2k_{22}), \quad M_{22} = D_{22}(k_{22} + n_1k_{11}), \quad H = D_{12}k_{12}, \quad e_{11} = \frac{\partial u_1}{\partial s_1}, \quad e_{22} = \frac{\partial u_2}{\partial s_2} + k_2 u_3, \quad e_{12} = \frac{\partial u_1}{\partial s_2} + \frac{\partial u_2}{\partial s_1}, \quad e_{13} = f_1 + \frac{\partial u_3}{\partial s_1}, \quad e_{23} = f_2 + \frac{\partial u_3}{\partial s_2} - k_2 u_2, \quad \partial i = \partial i = \partial i$$

 $k_{11} = \frac{\partial j_1}{\partial s_1}, \quad k_{22} = \frac{\partial j_2}{\partial s_2}, \quad k_{12} = \frac{\partial j_1}{\partial s_2} + \frac{\partial j_2}{\partial s_1}$

У співвідношеннях (5) введено такі позначення:

$$B_{11} = \frac{E_1 h}{1 - n_1 n_2}, \quad B_{22} = \frac{E_2 h}{1 - n_1 n_2},$$
$$B_{12} = G_{12} h, \quad B_{13} = G_{13} h, \quad B_{23} = G_{23} h,$$
$$D_{11} = \frac{E_1 h^3}{12(1 - n_1 n_2)}, \quad D_{22} = \frac{E_2 h^3}{12(1 - n_1 n_2)}, \quad D_{12} = G_{12} \frac{h^3}{12},$$

де $E_1, E_2, G_{12}, G_{13}, G_{23}, n_1, n_2$ – фізикомеханічні параметри ортотропного матеріалу оболонки.

Величини зусиль-моментів в рівняннях коливань для *i*-го ребра (3) пов'язані з відповідними величинами деформацій згідно співвідношень

$$T_{11i} = E_i F_i e_{11i}, \quad T_{12i} = G_i F_i e_{12i}, \quad T_{13i} = G_i F_i e_{13i}, \quad (6)$$
$$M_{11i} = E_i I_{1i} k_{11i}, \quad M_{12i} = G_i I_{cri} k_{12i}, \\e_{11i} = \frac{\partial u_1}{\partial s_1} \pm h_{ci} \frac{\partial j_1}{\partial s_1}, \quad e_{22i} = \frac{\partial u_2}{\partial s_2} \pm h_{ci} \frac{\partial j_2}{\partial s_1},$$

$$e_{13} = j_1 + \frac{\partial u_3}{\partial s_1}, \quad k_{11i} = \frac{\partial j_1}{\partial s_1}, \quad k_{11i} = \frac{\partial j_2}{\partial s_1}.$$

У співвідношеннях (6) E_i , G_i – фізико-механічні параметри матеріалу ребра; F_i , I_{1i} , I_{cri} – геометричні параметри поперечного перерізу i-го ребра.

Величини зусиль-моментів в рівняннях коливань для *j*-го ребра (4) пов'язані з відповідними величинами деформацій згідно співвідношень

$$T_{11j} = E_{i}F_{i}e_{11j}, \quad T_{12j} = G_{j}F_{j}e_{12j}, \quad T_{13j} = G_{j}F_{j}e_{13j}, \quad (7)$$

$$M_{11j} = E_{j}I_{1j}k_{11j}, \quad M_{12j} = G_{j}I_{iorj}k_{12j}, \quad e_{11j} = \frac{\partial u_{1}}{\partial s_{1}} \pm h_{cj}\frac{\partial j_{1}}{\partial s_{1}}, \quad e_{22j} = \frac{\partial u_{2}}{\partial s_{2}} \pm h_{cj}\frac{\partial j_{2}}{\partial s_{1}}, \quad e_{13} = \varphi_{1} \pm \frac{\partial u_{3}}{\partial s_{1}}, \quad \kappa_{11j} = \frac{\partial \varphi_{1}}{\partial s_{1}}, \quad \kappa_{11j} = \frac{\partial \varphi_{2}}{\partial s_{1}}.$$

У співвідношеннях (7) E_j , G_j – фізикомеханічні параметри матеріалу ребра; F_j , I_{1j} , I_{torj} – геометричні параметри поперечного перерізу j-го ребра.

Рівняння коливань (2)-(7) доповнюються відповідними граничними і початковими умовами.

II. Результати досліджень

2.1. Чисельний алгоритм.

Чисельний алгоритм розв'язку початковокрайової задачі (2)-(7) заснований на застосуванні інтегро-інтерполяційному методі побудови різницевих співвідношень по просторовим координатам S_1 , S_2 і явної апроксимації по тимчасовій координаті t [2, 11].

Згідно вихідної постановки задачі розв'язок шукається в гладкій області (рівняння (2), (5)) і склеюється на лініях розривів (рівняння (3), (4)). Зупинимося на побудові рішення в гладкою області $D = \{s_{10} \le s_1 \le s_{1N}; s_{20} \le s_2 \le s_{2N}\}$. Виберемо під область $D_{kl}^1 \subset D$,

 $D_{kl}^1 = \{s_{1k-1/2} \le s_1 \le s_{1k+1/2}; s_{2l-1/2} \le s_2 \le s_{2l+1/2}\}$ і проінтегруємо рівняння коливань (2) по цій підобласті. В результаті отримаємо такі різницеві співвідношення знаходження рішень на (n+1)-му часовому шарі.

$$\frac{T_{11k+1/2,l}^{n} - T_{11k-1/2,l}^{n}}{\Delta s_{1}} + \frac{S_{k,l+1/2}^{n} - S_{k,l-1/2}^{n}}{\Delta s_{2}} = rh(u_{1k,l}^{n})_{\tilde{t}t}, \quad (8)$$

$$\frac{S_{k+1/2,l}^{n} - S_{k-1/2,l}^{n}}{\Delta s_{1}} + \frac{T_{22k,l+1/2}^{n} - T_{22k,l-1/2}^{n}}{\Delta s_{2}} + \frac{k_{2l}}{2}(T_{23k,l+1/2}^{n} - T_{23k,l-1/2}^{n}) = rh(u_{2k,l}^{n})_{\tilde{t}t},$$

- / -

~~

$$\frac{T_{13k+1/2,l}^{n} - T_{13k-1/2,l}^{n}}{\Delta s_{1}} + \frac{T_{23k,l+1/2}^{n} - T_{23k,l-1/2}^{n}}{\Delta s_{2}} - \frac{k_{2l}}{2} (T_{22k,l+1/2}^{n} - T_{22k,l-1/2}^{n}) + P_{3k,l}^{n} = rh(u_{3k,l}^{n})_{it},$$

$$\frac{M_{11k+1/2,l}^{n} - M_{11k-1/2,l}^{n}}{\Delta s_{1}} + \frac{H_{k,l+1/2}^{n} - H_{k,l-1/2}^{n}}{\Delta s_{2}} - \frac{1}{2} (T_{13k+1/2,l}^{n} + T_{13k-1/2,l}^{n}) = r \frac{h^{3}}{12} (j_{1k,l}^{n})_{it},$$

$$\frac{H_{k+1/2,l}^{n} - H_{k-1/2,l}^{n}}{\Delta s_{1}} + \frac{M_{22k,l+1/2}^{n} - M_{22k,l-1/2}^{n}}{\Delta s_{2}} - \frac{1}{2} (T_{23k,l+1/2}^{n} + T_{23k,l-1/2}^{n}) = r \frac{h^{3}}{12} (j_{2k,l}^{n})_{it}.$$

Таким чином в різницевих співвідношеннях величини узагальнених переміщень u_1, u_2, u_3, j_1, j_2 співвіднесені до цілих вузлів просторової різницевої сітки, а величини зусиль-моментів (відповідно деформацій) співвіднесені до напівцілих вузлів – $(k \pm 1/2, l), (k, l \pm 1/2)$. Для отримання узгоджених різницевих співвідношень для зусиль-моментів рівняння (5) інтегруються за областями

$$D_{kl}^{2} = \{ s_{1k-1} \le s_{1} \le s_{1k}; \ s_{2l-1/2} \le s_{2} \le s_{2l+1/2} \},\$$

$$D_{kl}^{3} = \{ s_{1k} \le s_{1} \le s_{1k+1}; \ s_{2l-1/2} \le s_{2} \le s_{2l+1/2} \}$$

і т. д. У співвідношеннях (8) позначення різницевих похідних введено згідно [11]. Аналогічним чином будуються різницеві співвідношення для рівнянь коливань i-го і j-го підкріплюючого ребер. Зазначений підхід побудови різницевих схем дозволяє виконувати закон збереження повної механічної енергії вихідної пружної системи на різницевої рівні.

2.2. Числові результати.

Як частковий випадок тришарової циліндричної оболонки еліптичного перерізу, розглядається задача про вимушені коливання тришарових циліндричних оболонок поперечного кругового перерізу з поздовжньо-поперечним дискретним ребристим наповнювачем при внутрішньо розподіленому імпульсному навантаженні.

Розглядається задача вимушених коливань тришарової циліндричної оболонки з дискретним поздовжньо-поперечним ребристим заповнювачем при внутрішньому розподіленому імпульсному навантаженні. Покладається, що краї оболонки і елементів поздовжнього заповнювача жорстко закріплені. Граничні умови для цього випадку при x = 0, x = L мають наступний вигляд

$$u_1^k = u_2^k = u_3^k = j_1^k = j_2^k = 0, \ k = \overline{1,2};$$

$$u_{1i} = u_{2i} = u_{3i} = j_{1i} = j_{2i} = 0, \ i = 1, I.$$

Початкові умови для вказаної системи рівнянь – нульові.

Задача розглядалася при наступних геометричних і фізико-механічних параметрах:

$$L/h_{1} = 80, \quad h_{1} = h_{2},$$

$$R_{1}/h_{1} = 20, \quad h_{i} = 2h_{1}, \quad i = \overline{1, I};$$

$$E_{1}^{1} = E_{1}^{2} = E_{i} = E_{j} = 7 \cdot 10^{10} \, \Pi a;$$

$$n_{1}^{1} = n_{1}^{2} = 0.3; \quad r_{1} = r_{2} = r_{i} = r_{j} = 2.7 \cdot 10^{3} \, \text{kg/}$$

де R_k, h_k – радіус серединної поверхні і товщина внутрішньої оболонки; L – довжина конструкції. Розглялався випадок поздовжньо-поперечного дискретного заповнювача при I = 4 та J = 3, коли дискретні елементи рівномірно розташовані по просторовим координатам між внутрішньою і зовнішньої обшивками. Центри ваги поперечного перерізу дискретних елементів заповнювача проектуються на відповідні серединні поверхні обшивок по лініям $y_i = (i-1)pR/2$, *i* = 1, 4 та $x_j = jL/4, \quad j = \overline{1,3}.$ Нормальне імпульсне навантаження задавалося y вигляді $P_{3}^{1} = A \cdot [h(t) - h(t - T)],$ де h(t) функція Хевісайда, А – амплітуда навантаження, T_{-} тривалість навантаження. В розрахунках покладалося $A = 10^{6} \, \text{Ta}; T = 50 \cdot 10^{-6} \, \text{c}.$

Результати розрахунків вказаної задачі приведено на рисунку 2. Крива з індексом 1 відповідає величині внутрішньої обшивки, а крива з індексом 2 відповідає величині зовнішньої обшивки. Зокрема зображена залежність величини u_3 між поздовжніми ребрами по осі симетрії від просторової координати *x* в момент часу t = 7,5T. Виходячи з представленого матеріалу чітко спостерігається місце розташування поперечних дискретних підкріплюючих ребер ($x_i = jL/4$, j = 1, 3) – це точки з'єднання кривих з індексами 1 та 2. На рис. 3. представлено залежність величини И3 вздовж лінії центра ваги поперечного перерізу повздовжнього дискретного ребра від просторової координати х в момент часу t = 7,5T. В цьому випадку має місце одна крива, зображена на рисунку. Порівняння величин u_3 по лінії симетрії між ребрами (рис. 2) та знаходження повздовжнього по пінії ребра дозволяють характеризувати вплив поздовжньопоперечного дискретного заповнювача на розподіл параметрів кінематичних вихідної пружної структури. Розрахунки напружено-деформованого стану динамічної поведінки тришарових оболонок з врахуванням ребристого наповнювача проводилися на часовому інтервалі $t = 40T \div 60T$. В даній роботі представлені характерні залежності напружено-деформованого стану тришарової оболонки. Зокрема, розглядалися моменти часу, коли відповідні кінематичні та статичні величини досягали максимальних значень. Було помічено, що максимум величин U_3 по лінії симетрії між ребрами та вздовж

Динаміка тришарової циліндричної оболонки еліптичного перерізу...

Рис. 2. Залежність величини u₃ між ребрами по осі симетрії від просторової координати х в момент часу

Рис. 3. Залежність величини u_3 вздовж лінії центра ваги поперечного перерізу повздовжнього дискретного ребра від просторової координати х в момент часу t = 7,5T

ребра досягається в момент часу t = 7,5T, де Т – тривалість нестаціонарного навантаження. Порівняльний аналіз величини u_3 вздовж ребер (рис. 3) та величини u_3 по лінії симетрії між ребрами показує (рис. 2), що різниця по максимальним величинам u_3 сягає порядку 1,8 рази.

Висновки

В даній роботі, виходячи з варіаційного принципу Гамільтона-Остроградського, отримані рівняння коливань тришарових циліндричних оболонок еліптичного перерізу з дискретним ребристим наповнювачем. При розгляді елементів пружної структури використовуються моделі оболонок і стержнів згідно гіпотез Тимошенко. Для розв'язання отриманих рівнянь розвинений ефективний чисельний метод, який заснований на застосуванні інтегро-інтерполяційних співвідношень по просторовим координатам і явною кінцеворізницевої схемою по часовій координаті. Отримано розв'язок задачі про динамічну поведінку тришарової циліндричної оболонки еліптичного перерізу з дискретним ребристим наповнювачем при дії навантаження. Наведено імпульсного аналіз отриманих результатів. Павлюк А.В. – аспірант.

- [1] V.V. Bolotin, Yu.N. Novichkov, Mechanika mnogosloynykh konstruktsyy (Mashynostroenie, Moskva, 1980).
- [2] K.G. Golovko, P. Z. Lugovoy, V. F. Meysh, Dinamika neodnorodnykh obolochek pri nestatsyonarnykh nagruzkakh (Kievskiy universitet, Kuiv, 2012).
- [3] E.I. Grigolyuk, G. N. Kulikov, Razvitie obshchego napravleniya v teorii mnogosloynykh obolochek, Mekhanika kompozitnykh materialov, 24(2), 231 (1988).
- [4] A.N. Guz, V. D. Kubenko, Metody rascheta obolochek T.5 Teoriya nestatsuonarnoy aerogidrouprugosti obolochek (Naukova Dumka, Kyiv 1982).
- [5] A.A. Dudchenko, S. A. Lurie, I. F. Obraztsov, Anisotropnye mnogosloynye plastiny i obolochki (VINITI, Moskva, 1983).
- [6] V. G. Piskunov, A. O. Rasskazov, Razvitie teorii sloistykh plastin i obolochek, Uspekhi mekhaniki, T 3, Kiev, 141 (2007).
- [7] H. Altenbach, An alternative determination of transverse shear stiffnesses for sandwich and laminated plates, Int. J. of Solids Struct., 37, 3503 (2000).
- [8] H. Altenbach, Theories for laminated and sandwich plates: A review, Mechanics of composite materials, 34(3), 243 (1998).
- [9] E. Carrera, Developments, ideas, and evaluations based upon Reissner's Mixed Variational Theorem in the modeling of multilayered plates and shells, Appl. Mech. Reviews, 54, 301 (2001).
- [10] D.V. Leonenko, E. I. Starovoitov, Vibrations of Cylindrical Sandwich Shells with Elastic Core under Local Loads, Int. Appl. Mech., 52(4), 359 (2016).
- [11] P.Z. Lugovoi, V.F. Meish, S.E. Shtantsel, Forced Nonstationary Vibrations of a Sandwich Cylindrical Shell with Cross-Ribbed Core, Int. Appl. Mech. 41(2)161 (2005).
- [12] V.F. Meish, S E. Shtantsel, Dynamic Problems in the Theory of Sandwich Shells of Revolution with a Discrete Core under Nonstationary Loads, Int. Appl. Mech., 38(12), 1501 (2002).
- [13] Yu. A. Meish, Nonstationary Vibrations of Transversely Reinforced Elliptic Cylindrical Shells on an Elastic Foundation, Int. Appl. Mech. 52(6), 359(2016).
- [14] A.K. Noor, W.S. Burton, Assessment of Computational Models for Multilayered Composite Shells, Appl. Mech. Rev., 43(4), 67(1990).
- [15] A.K. Noor, W.S. Burton, C.W Bert., Computational Models for Sandwich Panels and Shells, Appl. Mech. Rev., 49(3), 155(1996).
- [16] A.K. Noor, W.S. Burton, J.M. Peters, Assessment of Computation Models for Multilayered Composite Cylinders, Int. J. of Solids and Structures 27(10), 1269(1991).
- [17] N. Pagano, Free edge stress fields in composite laminates, Int. J. of Solids Struct., 401(1978).
- [18] N.J Pagano, Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates, J. of Composite Materials., 4, 20(1970).
- [19] M.S. Qatu, Recent Research Advances in the Dynamic Behavior of Shells: 1989-2000, Part 1: Laminated Composite Shells, Appl. Mech. Rev. 55(4), 325 (2002).
- [20] M.S. Qatu, R. W. Sullivan, W. Wang, Recent Research Advances in the Dynamic Behavior of Composite Shells: 2000 – 2009, Composite Structures. 93(1), 14(2010).
- [21] J.N. Reddy, On refined computational models of composite laminates, Int. J. for Numerical Methods in Engineering., 361(1989).
- [22] K.P. Soldatos, Mechanics of Cylindrical Shells with Non Circular Cross Section, Appl. Mech. Rev., 49(8), 237 (1999).

A.V. Pavliuk

Dynamics of Three-layer Cylindrical Shells Elliptical Cross-Section With a Longitudinal-Transverse Discrete Ribbed Filler

S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Nesterova str., 3, Kyiv, Ukraine, <u>aniutapavliuk@gmail.com</u>

In this paper, we consider the equations of non-axisymmetric oscillations of discretely reinforced multilayer cylindrical shells of elliptical section. When analyzing the elements of the elastic structure, a refinement model of the theory of shells and rods of the Timoshenko type is used. The numerical method of solving the dynamic equations is based on the integro- interpolation method of constructing the finite-difference schemes for equations with discontinuous coefficients. The problem of dynamic behavior of a three-layer longitudinal-transversal reinforced cylindrical shell of an elliptical section under a distributed nonstationary load is investigated. A solution of the problem on dynamic behaviour of the three-layered cylindrical shell with some discrete longitudinal-transverse ribbed filler is considered for distributed non-stationary loading.

Keywords: three-layer cylindrical shell, elliptic cross-section, Timoshenko-type theory, forced vibrations, numerical solution.