Physics and Chemistry of Solid State

 

2015   Vol.16   ¹1

Title

Content

Editorial
Board

 

 

DOI: 10.15330/pcss.16.1.20-27

A. Shirinyan

On the Role of Mesoentropy in Thermodynamics of First Order Phase Transformations in Alloys

“Physical-chemical materials science” center of Kyiv National University and National Academy of Sciences of Ukraine, Physics Faculty, Kyiv Taras Shevchenko National University, vul. Volodymyrska 61, 01601, Kyiv, Ukraine, aramshirinyan@ukr.net

A thermodynamics of a new phase formation in a binary alloy, taking into account the chemical depletion and the size distribution of new phase nuclei giving the energy input at high temperatures, is considered. It is shown the principal possibility of obtaining of the size distribution function for nuclei in the framework of a general variation procedure for the Gibbs free energy functional. The ‘chemical depletion’ related to the difference of compositions of the new phase embryo and the solution of the solid metastable alloy is discussed. The role of the ‘mesoentropy’ for the determination of whole energy of first order phase transformation is manifested.
Keywords: new phase embryo, Gibbs potential, chemical depletion, mesoentropy, size distribution, nucleation sites, variational procedure.

Full text (on original language) .pdf
Home 

 Reference

[1] M. Volmer, A. Weber, Zeitschrift für Physikalische Chemie Bd A 119(3/4), 277 (1926).
[2] Ja. B. Zel'dovich, Zhurnal Jeksperimental'noj Teoreticheskoj Fiziki 12(11/12), 525 (1942).
[3] Ja.I. Frenkel', Kineticheskaja teorija gidkostej (Nauka, Leningrad, 1975).
[4] J.A. Marqusee, J. Ross, Journal of Chemical Physics 80, 536 (1984).
[5] S.A. Kukushkin, V.V. Slezov, Dispersnye sistemy na poverhnosti tverdyh tel: mehanizmy obrazovanija tonkih plenok (jevoljucionnyj podhod) (Nauka, Sankt-Peterburg, 1996).
[6] S.A. Kukushkin, A.V. Osipov, Uspehi Fizicheskih Nauk 168(10), 1083 (1998).
[7] A.V. Koropov, S.A. Kukushkin, D.A. Grigor'ev, Zhurnal Tehnicheskoj Fiziki 69(7), 53 (1999).
[8] A.M. Gusak, G.V. Lutsenko, Philosophical Magazine A, 85(12), 1323 (2005).
[9] A.I. Rusanov, Fazovye ravnovesija i poverhnostnye javlenija (Himija, Leningrad, 1967).
[10] F. Liu, R. Kirchheim, Scripta Materialia 51, 521 (2004).
[11] A.S. Shirinyan, M.P. Kudyn, Ukrainian Journal of Physics 50 (2008).
[12] A.S. Shirinjan, N.P. Kudin, Metallofizika i Novejshie Tehnologii 29(11), 1537 (2007).
[13] A.O. Koval'chuk, A.S. Shirinjan, J.W. P. Schmelzer, V³snik ChNU ³men³ B. Hmel'nic'kogo. Ser³ja f³ziko-matematichn³ nauki 171, 8 (2009).
[14] K.F. Kelton, Solid State Physics 45, 75 (1991).
[15] A.G. Hachaturjan, Teorija fazovyh prevrashhenij i struktura tverdyh rastvorov (Nauka, Moskva, 1974).
[16] A. Blatter, J. Gfeller, M. Allmen, Journal of the Less-Common Metals 50(26), 317 (1988).
[17] K.V. Chuistov, Metalof³zika ³ Nov³tn³ Tehnolog³¿ 17(4(6)), 3 (1995).
[18] A.V. Serebrjakov, Metalof³zika ³ Nov³tn³ Tehnolog³¿ 13(5), 115 (1991).
[19] K.F. Kelton, Philosophical Magazine Letters 77(6), 337 (1998).
[20] A.S. Shirinyan, M. Wautelet, Nanotechnology 15, 1720 (2004).
[21] A.S. Shirinyan, A.M. Gusak , P.J. Desre, Journal of Metastable and Nanocrystalline Materials 7, 17 (2000).
[22] A.S. Sh³r³njan, Zm³na f³ziko-h³m³chnih vlastivostej nanomater³al³v u rozm³rno-zalezhnih fazovih peretvorennjah pershogo rodu. (Disertac³ja na zdobuttja naukovogo stupenja doktora f³ziko-matematichnih nauk za spec³al'n³stju 01.04.07 – f³zika tverdogo t³la) (KNU ³men³ Tarasa Shevchenka, Ki¿v, 2012).