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Within the framework of proton model with taking into account the piezoelectric interaction with the shear 
strain 6ε , a dynamic dielectric response of KH2PO4 family ferroelectrics and antiferroelectrics is considered. 

Piezoelectric resonance frequencies of rectangular thin plates of the crystals cut in the (001) plane (0 o  Z-cut) are 
calculated, which are found to be in a good agreement with experiment. 
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Introduction 

In our previous papers [1,2] we explored the 
dynamic dielectric response of square thin plates cut 
from the KH2PO4 family crystals in the planes (001), 
perpendicular to the axis of spontaneous polarization. 
Using the modification of the proton ordering model [3] 
that includes the piezoelectric coupling with the shear 
strain 6ε , within the framework of the Glauber approach 
[4] and the four-particle cluster approximation, we 
obtained expressions for the dynamic dielectric 
permittivity of the crystals, which took into account the 
dynamics of the shear strain 6ε . In the low-frequency 
limit these expressions coincided with the static permitti-
vities of mechanically free crystals, whereas in the 
microwave region they coincided with the dynamic 
permittivities of clamped crystals, exhibiting a 
relaxational dispersion. 

In the intermediate region, the obtained permittivities 
had numerous peaks associated with the piezoelectric 
resonances. However, while solving the partial 
differential equations for the strain in [1,2], the boundary 
conditions were not set correctly. Instead of demanding 
that the entire edges of the plate were mechanically free, 
we considered the plate free only at its vertices. It 
resulted in the underestimated values of the resonant 
frequencies. In the present paper we shall correct these 
errors. 

We shall not repeat here the details of the previous 
calculations, which were correct. The system 
Hamiltonians, most of the used notations, as well as 
derivation of the dynamic dielectric permittivities of 
clamped crystal (the pseudospin subsystem dynamics), 

can be found in [1,2]. 

I. Dynamic permittivity of KH2PO4 type 
crystals 

We shall consider shear mode vibrations of a thin 
x yL L×  rectangular plate of a KH2PO4 crystal, cut in the 

(001) plane, with the edges along [100] and [010] ( 0o  Z-
cut). The vibrations are induced by time-dependent 
electric field 3 3= i t

tE E e ω . In the ferroelectric phase this 
field, in addition to the shear strain 6ε , induces also the 
diagonal components of the strain tensor iε , but for the 
sake of simplicity we shall neglect them. 

Dynamics of pseudospin subsystem will be 
considered in the spirit of the stochastic Glauber model 
[4], using the four-particle cluster approximation. The 
system of equations for the time-dependent deuteron 
(pseudospin) distribution functions is   

1= 1 tanh ( ) ,
2

z
qf qf qf qf

ff f

d t
dt

α σ σ σ βε′ ′
′

 − 〈 〉 〈 − 〉  
∑∏ ∏  (1) 

where ( )z
qf tε ′  is the local field acting on the f ′ th 

deuteron in the q th cell, which can be found from the 
system Hamiltonian (see [1]); α  is the parameter setting 
the time scale of the dynamic processes in the pseudospin 
subsystem. 

Taking into account the symmetry of the distribution  
functions  
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 from (1) we obtain for them a closed system of 
equations 
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dt
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η η
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α η η
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      +
      
      

           


 (3) 

 The used here notations can be found in [1]. 
Dynamics of the deformational processes is described 
using classical Newtonian equations of motion of an 
elementary volume, which for the relevant to our system 

displacements 1u  and 2u  ( 1 2
6 =

u u
y x

ε
∂ ∂

+
∂ ∂

) read  

 
2 2

6 61 2
2 2= , = .
u u

y zt t
σ σ

ρ ρ
∂ ∂∂ ∂
∂ ∂∂ ∂

  (4) 

Here ρ  is the crystal density, 6σ  is the mechanical 
shear stress, which, being the function of (1)η , 3E , and 

6ε , is found from the constitutive equations derived in 
[1]. 

At small deviations from the equilibrium we can 
separate in the systems (3) and (4) the static and time-
dependent parts, presenting the dynamic variables (1)η , 

(3)η , (2)
iη , 6ε , 1,2u  as sums of the equilibrium values and 

of their fluctuational deviations, while the fluctuational 
parts are assumed to be in the form of harmonic waves  
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The fluctuational part of (3) is then reduced to the 
system of linear first-order differential equations with 
constant coefficients, solving which we get  
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 the notations introduced here can be found in [1]. 
Substituting (5) into Eqs. (4), we obtain  

 
2 2

2 21 2
6 1 6 22 2= 0,   = 0,

u uk u k u
y x

∂ ∂
+ +

∂ ∂
 (6) 

 where 6k  is the wavevector   
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Differentiating the first and second equations of (6) 
with respect to y  and x , correspondingly, remembering 
that we neglect the diagonal strains 1 1= /u xε ∂ ∂  and 

2 1= /u yε ∂ ∂ , and adding the two obtained equations, we 
arrive at the single equation for the strain 6ε   

 
2 2

26 6
6 62 2

( , ) ( , )
( , ) = 0.

x y x y k x y
x y

ε ε
ε

∂ ∂
+ +

∂ ∂
 (9) 

Boundary conditions for 6 ( , )x yε  follow from the 
assumption that the crystal is simply supported, that is, it 
is traction free at its edges (at = 0x , = xx L , = 0y , 

= yy L , to be denoted as Σ )  
 6 | = 0.σ Σ  10) 

 In our previous consideration [1] this condition was 
fulfilled at the corners of the crystal plate only, but not 
along all its edges. Substituting (10) into the constitutive 
relations, we obtain the explicit boundary conditions for 
the strains in the following form  

 36
6 0 3

66

( )
| = ,

( )i E

e
E

c
αω

ε ε
αωΣ ≡  (11) 

where  
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Solution of (7) with the boundary conditions (11) is  
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with 0
k lω  given by  
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0 66
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E
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ω π
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 + +
+ 

  
 (14) 

Using the expression, relating polarization 3P  to the 
order parameter (1)η  and strain 6ε  (see [1]), we find that   
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 where  

 
2

0 (1)3
33 33( ) = ( )

2
Fε ε βµ
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υ

+  (16) 

is the dynamic dielectric susceptibility of a clamped 
crystal. 

Now we can calculate the dynamic dielectric 
susceptibility of a free crystal 33 ( )σχ αω  as  

 33 3
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x y
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L L E
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In the static and the high frequency limits from (18) 
we obtain the static susceptibility of a free crystal [3] and 
the dynamic susceptibility of a mechanically clamped 
crystal, exhibiting relaxational dispersion in the 
microwave region. Thus, eq. (18) explicitly describes the 
effect of crystal clamping by high-frequency electric 
field. 

In the intermediate frequency region, the 
susceptibility has a resonance dispersion with numerous 
peaks ar frequencies where 6R [ ( )]e R ω → ∞ . Frequency 
variation of 66 ( )Ec αω  is perceptible only in the region of 
the microwave dispersion of the dielectric susceptibility. 
Below this region it is practically frequency independent 
and coincides with the static elastic constant 66

Ec . Since 
the resonance frequencies are expected to be in the 

4 710 10−  Hz range, depending on temperature and 

sample dimensions, the equation for the resonance 
frequencies (14) is reduced to an explicit expression by 
putting in it 66 66( )E Ec cαω → . 

Comparing (14) to the expression obtained 
previously [1] for a square L L×  plate cut in the (001) 
plane  

 66 ( )(2 1)= ,
E

k
k

ck
L

ωπ
ω

ρ
+  

we can see that the incorrectly set boundary conditions 
[1] led to the first resonance frequency, being 2  times 
smaller than the one given by (14). However, the low and 
high frequency limits of the susceptibility calculated in 
[1]  (the static value and the clamped values with the 
relaxational dispersion in the microwave region) were 
correct. 

The used values of the model parameters can be 
found in [1]. As one can see, in the paraelectric phase the 
first resonance frequency of a rectangular 0 o  Z-cut of a 
KH2PO4 crystal, calculated from (14), accords well with 
experimental data. The discrepancy between the theory 
and experiment in the ferroelectric phase is obviously 
caused by the contributions of the domain effects into the 
elastic constant of the crystal, which are not considered 
in the present model. Note that the first resonant 
frequency has a sharp minimum at the transition point, 
owing to the similar behavior of the elastic constant 66

Ec . 

II. Resonant frequencies of NH4H2PO4 
type crystals 

We consider vibrations of a 0 o  Z-cut of an 
antiferroelectric NH4H2PO4 type crystal, produced by an 
external time-dependent electric field 3 3= i t

tE E e ω . 
Taking into account the system Hamiltonian, the 
symmetry of the proton distribution functions for the 
case of antiferroelectric ordering [2,5], and following the 
procedure, described in the previous section, we obtain 
an expression for the dynamic dielectric permittivity of a 
free crystal, which is formally the same as for the case of 
ferroelectric ordering (18). However, the elastic constant 
is different  
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Figure 1. The first resonance frequency 0
0 00= / 2ν ω π  

of a rectangular 0 o  Z-cut of a KH2PO4   crystal. 
Symbols are experimental points taken from [6]. Line: 
the present theory.   
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Just like in the case of KH2PO4 type crystals, it does 
not have any perceptible frequency variation in the 
piezoelectric resonance region and coincides with the 
static constant 66

Ec . On the other hand, in NH4H2PO4 the 
elastic constant 66

Ec  does not exhibit any anomalous 
behavior in the transition region and is about 116 10⋅  N/m
2  between N = 148T  K and 300 K [5]. 

The expressions for the piezoelectric coefficient 
36 ( )e αω , dynamic dielectric susceptibility of a clamped 

crystal 33
εχ , the function 6 ( )R ω , and the equation for the 

resonant frequencies are the same as in the case of a 
ferroelectric KH2PO4 type crystals: (12), (16), (19), and 
(14), respectively. However, the functions (1) ( )F ω  and 
other auxiliary quantities used in these formulae as well 
as in (20) differ from those from the previous section and 
can be found in [2,5]. 

In fig. 2  we compare the calculated frequency 
constants (the resonant frequencies multiplied by the 
sample edge length 0

x klL ω ; the size-independent 
quantity) of a square 0 o  Z-cut of a NH4H2PO4 crystal to 
the available experimental data. As one can see, a very 
good agreement is obtained. The fitting procedure and 
values of the model parameters were given in [2,5]. 

Conclusions 

Within the proton ordering model with taking into 

account the shear strain 6ε  we explored a dynamic 
response of ferroelectric and antiferroelectric crystals of 
the KH2PO4 family to an external harmonic electric field 

3E . Dynamics of the pseudospin subsystem is described 
within the stochastic Glauber approach. Dynamics of the 
strain 6ε  is obtained from the Newtonian equations of 
motion of an elementary volume, with taking into 
account the relations between the order parameter of the 
pseudospin subsystem and the strain. Corrected 
expressions for the piezoelectric resonance frequencies 
of simply supported rectangular 0 o  Z-cuts of these 
crystals are obtained. They are shown to yield a good 
quantitative agreement with experimental data for 
KH2PO4 and NH4H2PO4 crystals. 

The ultimate goal of the present studies will be to 
generalize the obtained expression for the dynamic 
permittivity to the case of the Rb 1 x− (NH 4 )x PO 4  type 
proton glasses, in order to explore their dynamic 
dielectric response. It is known [9,10] that, just like their 
pure constituents, these mixed systems are piezoelectric, 
and their dynamic dielectric permittivity has a 
piezoelectric resonance dispersion. As our preliminary 
calculations show, the experimentally obtained resonant 
frequencies of such mixed crystals [11] are well 
described by the obtained here expression for the 
resonant frequencies, provided that the corresponding 
elastic constant 66

Ec  of such a system is known. 
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П’єзоелектричний резонанс в сегнетоелектриках типу KH2PO4 
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В рамках моделі протонного впорядкування з урахуванням п’єзоелектричного зв’язку зі зсувною 
деформацією 6ε  досліджено діелектричний відгук сегнетоелектриків та антисегнетоелектриків сім’ї 
KH2PO4. Розраховані частоти п’єзоелектричного резонансу прямокутних тонких пластин таких кристалів, 

вирізаних в площині (001) (0 oZ-перерізи) добре узгоджуються з експериментальними даними.   
Ключові слова: сегнетоелектрики, KH2PO4, п’єзоелектричний резонанс. 


