УДК 621.891+621.89+621.567

ISSN 1729-4428

# Г.О. Сіренко, М.Б. Складанюк, Л.М. Солтис

# Металізація вуглецевих волокон подвійними та потрійними мідними композиціями

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, м. Івано-Франківськ, 76025, Україна Тел. (0342) 77.64.15; (096) 813.93.53, e-mail: <u>orijant@gmail.com</u>

Розглянуті теоретичні основи фізико-хімії та технології нанесення одно- та двошарового покриття на основі  $Cu^0+Cu_2O$ ,  $Ni^0+P$ ,  $Pb^0$  на поверхні карбонізованих за 1123 К вуглецевих волокон. Досліджено зміни в кристалічній структурі поверхневих шарів при покритті карбонових волокон міддю, яке здійснювалося у процесі металізації за модифікованою формальдегідною та цинковою технологіями. Встановлено, що вміст міді у покритті мідь – оксиди міді можна збільшити за рахунок двошарового покриття почергово цинковим та модифікованим формальдегідним способами.

Ключові слова: карбонові волокна, полімерні композити, ніколювання, мідніння, свинцювання.

Стаття поступила до редакції 15.10.2014; прийнята до друку 15.12.2014.

### Вступ

1. Відомі антифрикційні полімерні композиції на основі поліаміду П-54, що армовані порошками металів Cu<sub>2</sub>O [1], брондз [2], Cu<sup>0</sup> [3], Cu<sup>0</sup>+Ni<sup>0</sup> [4], Cu<sup>0</sup>+Ni<sup>0</sup>+Ga<sup>0</sup>+In+MoS<sub>2</sub> [5]. Створення XMA-технології [6-9] та самозмащувальних антифрикційних матеріалів на основі карбонізованих вуглецевих волокон та полімерів [10-30] дозволило значно підвищити зносостійкість у 1,5-30 разів і термін та надійність роботи ущільнювальних елементів з цих матеріалів. Але є потенціальні можливості таких матеріалів у ще більшому зростанні ресурсу роботи ущільнювальних елементів компресорів, реакторів, помп та інших машин і механізмів шляхом багатошарового покриття поверхонь наповнювачів – вуглецевих волокон – подвійними та потрійними композиціями металів  $Cu^0$ , Ni<sup>0</sup>, Pb<sup>0</sup>, Fe<sup>0</sup> та введення їх у полімерну матрицю антифрикційних матеріалів.

2. Фізико-хімія та технологія міднення та ніколювання карбонізованих волокон (КВ) розглянуті у [7, 31-34], при цьому ретельно вивчена відома формальдегідна технологія та розроблені модифікована формальдегідна і цинкова технології міднення неграфітованих волокон, зокрема, і багатошарові покриття із застосуванням сумісно цинкової та модифікованої формальдегідної технологій.

**3. Відомі технології хімічного ніколювання.** Процесам хімічного та електрохімічного ніколювання поверхонь присвячена низка робіт вихідних досліджень [35-89], у тому числі й графітованих вуглецевих матеріалів і графітів [38-41, 67, 80, 89] та

вуглецевих волокон [67]. Роботи [35-37, 39, 40, 43-52, 54-56, 58, 61-63, 65, 67-72, 78, 86, 88, 89] присвячені процесам покриття поверхонь лише одним шаром Ni<sup>0</sup>, при цьому розглянуто закономірності ніколювання в основному з водних розчинів: з гіпофосфітного чи боргідридного розчину [56], з пірофосфатного розчину без [78], або у присутності ліґанду [82], а в роботах [52, 61, 68-71] - з органічного розчину, чи з порошковидного складу ніколу [55]. У роботах [86, 89] розглянуті технології тонкого покриття Ni<sup>0</sup>. Низка робіт присвячена нанесенню на поверхні одношарового покриття із стопів Ni<sup>0</sup> [64] або композиційних матеріалів [74], наприклад Ni<sup>0</sup>-Р [42, 56, 60, 66], Ni<sup>0</sup>-Fe<sup>0</sup> [52, 53], Ni<sup>0</sup>–B [56, 59], Ni<sup>0</sup>–Cu<sup>0</sup> [76, 80-82], Ni<sup>0</sup>–  $Cr^{0}$  [75],  $Ni^{0}-W^{0}$  [83],  $Ni^{0}-Mo^{0}$  [84],  $Ni^{0}-V^{0}$  [85],  $Ni^{0}-V^{0}$ Si [87], Ni<sup>0</sup>–Mo<sup>0</sup>–P [73], Ni<sup>0</sup>–Mn<sup>0</sup>–Zn<sup>0</sup> [77], Ni<sup>0</sup>–ΠΤΦΕ [79] тощо.

Мета роботи полягала у тому, щоби розробити технології ніколювання карбонізованих (неграфітованих) вуглецевих волокон, підданих інтенсивній хемомехано-активаційній обробці, одношарового та багатошарового (сумісно з міднінням) покриття.

#### I. Експериментальна частина

**1.** Об'єктами дослідження були карбонові волокна УТМ-8 (КВ), які отримані шляхом просочення вихідних гідратцелюлозних (віскозних) тканин антипіренами (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> і Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O з подальшим відпаленням за 723 $\pm$ 20 К в CH<sub>4</sub> та за 1123 $\pm$ 50 К в CH<sub>4</sub>. Отриману карбонізовану тканину піддали порізки на шматки від 4×4 до 6×6 см і подрібненню в дробарці МРП-1 з подовими ножами за 7000 обертів за хвилину (частота обертання 117 с<sup>-1</sup>) протягом 5 хв. Карбонові волокна мали числовий та масовий (об'ємний) розподіл Вейбулла за довжинами в межах 20-1200 мкм з основною фракцією 100-250 мкм [90].

**2.** Х-проміневі дифрактограми волокон знімали на установці УРС-60 у хромовому нефільтрованому К<sub> $\alpha$ </sub>-випромінюванні методом Дебая-Шеррера в камерах РКД (діаметр камери 57,3 мм). Фазовий склад поверхневих шарів мідного покриття карбонових волокон досліджували шляхом Х-проміневої зйомки на дифрактометрі ДРОН-3, використовуючи Си К<sub> $\alpha$ </sub>-випромінювання.

## **II.** Технологічна частина

**1. Ніколюванню поверхонь із розчинів,** які містять гіпофосфіт, присвячені роботи [35-51]. Аналіз цих робіт показав, що узагальнений склад розчинів ніколювання зводиться до складів:

• сіль нікола (II): 5-220 моль/л (частіше 50-200 моль/л);

гіпофосфіт: 15-650 моль/л (частіше 100-300 моль/л);
буферні речовини, ліганди для Ni (II), стабілізатори та інші добавки.

3 солей нікола частіше всього використовують хлориди (NiCl<sub>2</sub>·6H<sub>2</sub>O) або сульфати (NiSO<sub>4</sub>·7H<sub>2</sub>O), а також карбонати, ацетати, сульфонали та ін. Окрім NaH<sub>2</sub>PO<sub>2</sub>·H<sub>2</sub>O, використовують такі добавки: (CH<sub>3</sub>COO)Na·3H<sub>2</sub>O, (C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>)Na<sub>3</sub>·2H<sub>2</sub>O, лимонну, молочну, пропіонову кислоти, калій гліколят, натрій бензоат, NH<sub>4</sub>Cl, NH<sub>3</sub>, Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>·10H<sub>2</sub>O та ін. для регулювання pH розчину.

Склади ніколювання містять: 6-50 г/л NiCl<sub>2</sub>·6H<sub>2</sub>O або 22-30 г/л NiSO<sub>4</sub>·7H<sub>2</sub>O; 8-70 г/л NaH<sub>2</sub>PO<sub>2</sub>·H<sub>2</sub>O; 5-10 г/л (CH<sub>3</sub>COO)Na·3H<sub>2</sub>O або 45-90 г/л (C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>)Na<sub>3</sub>x x2H<sub>2</sub>O; 5-100 г/л інших добавок. Технологічні параметри: pH = 4-11, T = 328-373 К. Для цих складів і технологічних параметрів досягають швидкості ніколювання 1,5-25,0 мкм/год.

**2. Відомі два види розчинів** хімічного ніколювання: кислі (pH=4-6) та лужні (pH=8-11). Експериментально виявлено, що хімічне ніколювання поверхонь діелектриків КВ, що інтенсивно активовані, з кислих розчинів протікає дуже повільно та неефективно, так як відбувається утворення металічного нікола в об'ємі розчину. Знайдено, що осаджування Ni<sup>0</sup> на карбонові волокна відбуваються з лужних розчинів, при цьому підготовка поверхні карбонізованого волокна УТМ-8, як і під час їх мідніння за формальдегідною технологією, має значний вплив на подальший процес ніколювання.

**3.** Розроблена наступна технологія ніколювання карбонових волокон (у розрахунку на 10 г дисперсії КВ):

#### (1) підготовка поверхні:

• обезжирювання у лужному розчині (30% NaOH) 500 мл на протязі 10-15 хв.;

• хімічне розтравлення поверхні розчином: H<sub>2</sub>SO<sub>4</sub> (80% конц.) – 300 мл + HF (40% конц.) – 150 мл на протязі 5-10 хв.; • сенсибілізація у розчині NaH<sub>2</sub>PO<sub>2</sub> (150 г/л) за 363 К на протязі 5-10 хв.;

 кожну операцію завершували фільтруванням та промивкою водою на фільтрі;

(2) власне ніколювання:

а) склад розчину ванни:

NiCl<sub>2</sub>·6H<sub>2</sub>O: 15-50 г/л (оптимально 30 г/л);

винна кислота: 20-60 г/л (35 г/л);

NaH<sub>2</sub>PO<sub>2</sub>: 20-60г/л (35 г/л);

NH<sub>4</sub>Cl: 15-50 г/л (30 г/л);

NH<sub>4</sub>OH (25% конц.): до pH=8,5-9,5 (pH=9,0);

алільна похідна сполука: 15-20 мл (18 мл);

#### б) технологія:

• в 1 л розчину, який містив NiCl<sub>2</sub>, винну кислоту, NH<sub>4</sub>Cl, вносили 20 г KB з попередньою свіжо приготовленою поверхнею за (1);

• нагрівали розчин до 370±2 К і під час перемішування (нагрітий до 358±5 К) додавали насичений розчин NaH<sub>2</sub>PO<sub>2</sub> частками на протязі 2,0-2,5 год.;

• далі вводили алільну похідну сполуку;

• далі за 310±2 К вводили NH<sub>4</sub>OH, підтримуючи pH=9,0±0,5 розчину;

• перемішували, підтримуючи температуру розчину 310±2 К на протязі 3 год. під час щільності завантаження ванни 20 г дисперсії КВ в 1 л розчину;

• потім розчин з КВ з (Ni<sup>0</sup>+P)-покриттям фільтрували, промивали водою та ацетоном на фільтрі та висушували за 323±10 К.

Амоніак забезпечував буферність розчину, необхідну для досягнення відносно високої та сталої швидкості ніколювання (2,5 мкм/год.).

У вище наведених складах розчину та технології, покриття на КВ уявляє собою стоп (Ni<sup>0</sup>+P), який містить до 3-12% (у лужних розчинах з pH=8-9 – 3-7%) Р – у вигляді перенасиченого твердого розчину фосфору в ніколі кристалічної будови.

Привіс покриття (Ni<sup>0</sup>+P) досягав 25-75% мас. від маси карбонового волокна.

# 4. Хімізм процесу ніколювання з гіпофосфітним відновником.

Гіпофосфіт відновлює йони Ni<sup>2+</sup> за pH розчину більше 3. Реакції відновлення можна записати у загальному вигляді так:

• 3a pH≤(1-3):

$$Ni^{2+}+2H_2PO_2^{-}+2H_2O \xrightarrow{Ni^o} Ni^0+2H_2PO_3^{-}+2H^++H_2\uparrow;$$
(1)

$$Ni^{2+}+2H_2PO_2^{-}+2H_2O \xrightarrow{Ni^o} Ni^0+2HPO_3^{2-}+4H^++H_2\uparrow.$$
(2)

У сильнолужних розчинах у реакції відновлення гіпофосфіт використовується з високою ефективністю:

Ni<sup>2+</sup> + H<sub>2</sub>PO<sub>2</sub><sup>-</sup> + 3OH<sup>-</sup> → Ni<sup>0</sup> + HPO<sub>3</sub><sup>2-</sup> + 2H<sub>2</sub>O. (3) Гіпофосфіт витрачається також на утворення селони дилі ритрачається також на утворення

фосфору, який включається у вигляді стопу (Ni<sup>0</sup>+P) у покриття на поверхні карбонізованого вуглецевого волокна:

 $4H_2PO_2^- + 2H^+ \rightarrow 2P + 2H_2PO_3^- + 2H_2O + H_2\uparrow$ . (4) З високою ймовірністю можлива реакція з менш ефективним використанням гіпофосфіту:

 $4H_2PO_2^- + H_2O + H^+ \rightarrow P + 3H_2PO_3^- + 2\frac{1}{2}H_2\uparrow, (5)$ 

але у сильнолужних розчинах під час осадження Ni<sup>0</sup> на КВ за реакцією (3) використання гіпофосфіту більш ефективне:

 $3H_2PO_2^- \rightarrow 2P + HPO_3^{2-} + OH^- + 2H_2O.$  (6)

Фактично під час процесу ніколювання КВ (pH=4-12) витрачається біля 3-х молей гіпофосфіту на 1 моль відновленого ніколу Ni<sup>0</sup> (більше 4 г NaH<sub>2</sub>PO<sub>2</sub> на 1 г покриття). Коефіцієнт використання гіпофосфіту за реакціями (1), (2), (4), який враховує реакції утворення Ni<sup>0</sup> та P, для практичних розчинів ніколювання складає 70-90%. Решта гіпофосфіту каталітично розкладається на поверхні покриття (Ni<sup>0</sup>+P) із-за гідролітичного окиснення H<sub>2</sub>PO<sub>2</sub><sup>-</sup> до H<sub>2</sub>PO<sub>3</sub><sup>-</sup>.

**5.** Далі КВ з покриттям Ni<sup>0</sup>+Р піддавали хімічному міднінню за цинковою або формальдегідною технологією.

#### 6. Хімічне свинцювання.

Покриття карбонових волокон металом плюмбумом можливе, якщо попередньо ці волокна покрити Cu<sup>0</sup>. Таку металізацію КВ проводили у 3 стадії:

**І. Хімічним мідненням** за цинковою або формальдегідною технологією отримували 1-й шар покриття складу Cu<sup>0</sup>+Cu<sub>2</sub>O на поверхні КВ.

**II. Хімічне свинцювання** здійснювали за такою технологією:

20-30 г дисперсії КВ з покриттям Cu<sup>0</sup>+Cu<sub>2</sub>O суспендували у 500-800 мл льодової оцтової кислоти;

2) за інтенсивним перемішуванням у (1) частками додавали розчин, який містив 20-100 г плюмбум ацетату у 100-350 мл льодової оцтової кислоти;

 далі за кімнатної температури та під час інтенсивного перемішування за 30 хв. вносили у суспензію
 10-60 г порошку цинку порціями, змішували 1,5-2 год.;

4) фільтрували та промивали на фільтрі:

а) 200-350 мл льодовою оцтовою кислотою;

б) потім 200-350 мл лужним розчином формаліну

(10 мл/л формаліну + 10 г/л NaOH);

в) ацетоном;

5) отриману дисперсію КВ з покриттям  $Cu^0$  +  $Cu_2O+Pb^0$  піддавали сушці за 308 $\pm$ 5 К;

6) отримували привіс  $Pb^0$  на КВ до 30-250% від маси волокна.

**Ш. Далі таке покрите волокно** піддавали хімічному міднінню за цинковою або формальдегідною технологією.

#### **III.** Результати та обговорення

Для непокритого карбонізованого волокна спостерігається наноаморфна структура поверхневих шарів. Для непокритого карбонізованого волокна УТМ-8 після 3,3 хв. дроблення в МРП-1 спостерігається незначна нанометрична упорядкованість шарів з параметрами: d (002) = 0,386 нм і L (002) =  $L_c$  = 0,614 нм. При збільшенні часу дроблення в МРП-1 до 11 хв. упорядкованість турбостратної структури зростає, але її ступінь залишається малою. Для карбонізованого волокна УТМ-8 судити про розмір структурних елементів утруднено, тому що КВ має значний вміст аморфної фази карбону.

#### 1. Формальдегідна технологія мідніння.

На рис. 1 приведена дифрактограма карбонізованого волокна УТМ-8, яке покрите одним (рис. 1а) або двома (рис. 1б) мідними шарами за модифікованою формальдегідною технологією (мф).

Як видно з рис. 1а, склад одношарового покриття на карбонізованому волокні УТМ-8 має такі фази: Cu<sup>0</sup> (hkl 111, 002), Cu<sub>2</sub>O (hkl 111, 002, 022) та CuO (hkl 020, 200, -131), при цьому максимальна інтенсивність піків відповідає  $Cu^0$  (інтенсивність піка  $J_5 =$ 100% для  $2\theta_5 = 43,174$  град.;  $J_6 = 44$ % для  $2\theta_6 =$ 50,259 град., решта  $Cu_2O$  (J<sub>2</sub> = 17% для  $2\theta_2$  = 36,287 град.;  $J_4 = 8\%$  для  $2\theta_4 = 42,230$  град.;  $J_7 = 4\%$ для 20<sub>7</sub> = 61,186 град.); СиО (J<sub>1</sub> = 2% для 20<sub>1</sub> = 35,302 град.; Ј<sub>3</sub> = 1% для 20<sub>3</sub> = 38,646 град.; Ј<sub>7</sub> = 2% для  $2\theta_7 = 61,186$  град.). Сталі гратки фази  $Cu^0$ становлять: a, b, c = 0,36271(3) нм;  $\gamma$  = 90 град.; фази Cu<sub>2</sub>O: a, b, c = 0,42803(10) нм;  $\gamma$  = 90 град.; фази CuO: а = 0,46840(0) нм; b = 0,51290(0)нм; c = 0,34250(0)нм; γ = 99,5 град. Це пов'язано з такими хімічними реакціями в процесі технології:

$$2Cu^{2+} + 2Cu^{0} + O_2 \to 2Cu_2O;$$
 (7)

$$2Cu^+ + O_2 \to 2CuO; \qquad (8)$$

$$4Cu^0 + O_2 \to 2Cu_2O; \qquad (9)$$

$$2Cu^0 + O \to Cu_2O. \tag{10}$$



**Рис. 1.** Дифрактограма карбонізованого волокна УТМ-8, покритого одним (а) і двома (б) шарами міді за модифікованою формальдегідною технологією (мф).

Як видно з рис. 16, для двошарового покриття на карбонізоваому волокні УТМ-8 характерна відсутність рефлексів піків, що відносяться до СuO, але вміст Cu<sub>2</sub>O збільшується, бо зростає інтенсивність піків відбиття (111) у ~ 4,24 рази, (002) ~ у 3 рази та (022) ~ у 5,75 рази, і зменшується Ј для (022) у 1,2 рази. Фазовий склад двошарового покриття є такий: Cu<sup>0</sup> (hkl 111, 002), Cu<sub>2</sub>O (hkl 111, 002, 022), при цьому максимальна інтенсивність піків відповідає Cu<sup>0</sup> (J<sub>3</sub> = 100% для 2 $\theta_3$  = 43,056 град.; J<sub>4</sub> = 36% для 2 $\theta_4$  = 50,150 град.) та Cu<sub>2</sub>O (J<sub>1</sub> = 72% для 2 $\theta_1$  = 36,206 град.; J<sub>2</sub> = 24% для 2 $\theta_2$  = 42,100 град.; J<sub>5</sub> = 23% для 2 $\theta_5$  = 61,193 град.). Сталі гратки фази Cu<sup>0</sup>: a, b, c = 0,36352(2) нм;  $\gamma$  = 90 град.; фази Cu<sub>2</sub>O: a, b, c = 0,42832(21) нм;  $\gamma$  = 90 град.

#### 2. Цинкова технологія мідніння.

Як видно із дифрактограми карбонізованого волокна УТМ-8 (рис. 2), покритого одним (а), двома (б) та трьома (в) мідними шарами за цинковою технологією мідніння, фазовий склад є таким:  $Cu^0$  (hkl 111, 002) +  $Cu_2O$  (hkl 011, 111, 002, 022), при цьому, при збільшенні кількості шарів, зростає інтенсивність відбивання для  $Cu^0$ .

Так, для одношарового покриття I(ц) на волокні УТМ-8 (рис. 2а) максимальна інтенсивність піків відповідала Cu<sub>2</sub>O (J<sub>2</sub> = 100% для 2 $\theta_2$  = 36,264 град.; J<sub>1</sub> = 14% для 2 $\theta_1$  = 29,420 град.; J<sub>3</sub> = 28% для 2 $\theta_3$  = 42,156 град.; J<sub>6</sub> = 4% для 2 $\theta_6$  = 61,217 град.), а для Cu<sup>0</sup> інтенсивність піків була менша (J<sub>4</sub> = 22% для 2 $\theta_4$  = 43,162 град.; J<sub>5</sub> = 9% для 2 $\theta_5$  = 50,295 град.). Сталі гратки становили: для Cu<sub>2</sub>O a, b, c = 0,42762(18) нм,  $\gamma$  = 90 град.; для Cu<sup>0</sup> a, b, c = 0,36244(4) нм,  $\gamma$  = 9 град.

Для двошарового покриття I(ц)+II(ц) на волокні УТМ-8 (рис. 2б) максимальна інтенсивність піків відповідала Cu<sup>0</sup> (J<sub>4</sub> = 100% для 2 $\theta_4$  = 43,171 град.; J<sub>5</sub> = 45% для 2 $\theta_5$  = 50,302 град.) зі сталими гратки: a, b, c = 0,36253(4) нм,  $\gamma$  = 90 град., а для Cu<sub>2</sub>O інтенсивність піків була менша (J<sub>1</sub> = 1% для 2 $\theta_1$  = 29,417 град.; J<sub>2</sub> = 28% для 2 $\theta_2$  = 36,262 град.; J<sub>3</sub> = 8% для 2 $\theta_3$  = 42,154 град.; J<sub>7</sub>= 8% для 2 $\theta_7$  = 61,219 град.) зі сталими гратки: a, b, c = 0,42808(18) нм,  $\gamma$  = 90 град.

Для тришарового покриття I(п)+II(п)+II(п)+II(п) на волокні УТМ-8 (рис. 2в) максимальна інтенсивність піків також відповідала  $Cu^0$  ( $J_4 = 100\%$  для  $2\theta_4 =$ 43,156 град.;  $J_5 = 42\%$  для  $2\theta_5 = 50,288$  град.) зі сталими гратки: а, b, c = 0,36263(5) нм,  $\gamma = 90$  град. Для  $Cu_2O$  інтенсивність піків була менша ( $J_1 = 3\%$  для  $2\theta_1 =$ 29,423 град.;  $J_2 = 71\%$  для  $2\theta_2 = 36,266$  град.;  $J_3 =$ 20% для  $2\theta_3 = 42,148$  град.;  $J_6 = 22\%$  для  $2\theta_6 =$ 61,216 град.) (рис. 2в) зі сталими гратки: а, b, c = 0,42857(8) нм,  $\gamma = 90$  град.

Таким чином, вміст фази Cu<sub>2</sub>O максимальний для одношарового покриття, значно зменшується для двошарового покриття і знову зростає для тришарового покриття за цинковою технологією, що пов'язано з такими процесами:

$$Zn^0 + 2H^+ \to Zn^{2+} + H_2; \qquad (11)$$

$$Cu^{2+} + H_2 \rightarrow (CuH)^+ + H^+; \qquad (12)$$

$$(CuH)^{+} + Cu^{2+} \rightarrow 2Cu^{+} + H^{+};$$
 (13)

$$2Cu^+ \to Cu^0 + Cu^{2+}. \tag{14}$$



**Рис. 2.** Дифрактограма карбонізованого волокна УТМ-8, покритого одним (а), двома (б), трьома (в) мідними шарами за цинковою технологією.

# **3.** Відновлення міді за двома технологіями покриття на підкладці Ni<sup>0</sup>+P.

Відновлення міді в поверхневих шарах металізованого карбонізованого волокна можна досягнути за рахунок двошарового чи тришарового покриття почергово за модифікованою формальдегідною і цинковою або цинковою і формальдегідною технологіями на пікладці Ni<sup>0</sup>+P (перший шар). Рис. 3 показує на зміну фазового складу покриття при таких маніпуляціях.

Як видно з рис. За, для двошарового покриття  $II(M\phi)+III(\mu)$  на карбонізованому волокні УТМ-8 з підкладкою Ni<sup>0</sup>+P (перший шар), яке утворене за модифікованою формальдегідною (другий шар) та цинковою (третій шар) технологіями, зменшується вміст фази Cu<sup>0</sup> і збільшується вміст фази Cu<sub>2</sub>O порівняно з двошаровим покриттям тільки за

формальдегідною (рис. 16) або цинковою (рис. 26) технологіями. Фази складалися (рис. 3а) з Cu<sub>2</sub>O (hkl 011, 111, 002, 022) та Cu<sup>0</sup> (hkl 111, 002). Максимальна інтенсивність піків відповідала Cu<sub>2</sub>O (J<sub>1</sub> = 5% для 2 $\theta_1$  = 29,554 град.; J<sub>2</sub> = 100% для 2 $\theta_2$  = 36,408 град.; J<sub>3</sub> = 35% для 2 $\theta_3$  = 42,298 град.; J<sub>6</sub> = 32% для 2 $\theta_6$  = 61,370 град.) (рис. 3а) зі сталими гратки: а, b, c = 0,42694(3) нм,  $\gamma$  = 90 град., а для Cu<sup>0</sup> інтенсивність піків була менша (J<sub>4</sub> = 64% для 2 $\theta_4$  = 43,310 град.; J<sub>5</sub> = 27% для 2 $\theta_5$  = 50,440 град.) зі сталими гратки: а, b, c = 0,36154(0) нм,  $\gamma$  = 90 град.



УТМ-8, покритого першим шаром Ni<sup>0</sup>+P, та наступними: двома шарами за модифікованою формальдегідною (другий шар) та цинковою (третій шар) технологіями (а); двома шарами за цинковою (другий шар) та модифікованою формальдегідною (третій шар) технологіями (б); трьома шарами: за цинковою (другий і третій шари) та модифікованою формальдегідною (четвертий шар) технологіями (в).

Як видно з рис. Зб, для двошарового покриття II(ц)+III(мф) на карбонізованому волокні УТМ-8 з підкладкою Ni<sup>0</sup>+Р (перший шар), яке утворено за цинковою (другий шар) та модифікованою формальдегідною (третій шар) технологіями, домінує фаза Cu<sup>0</sup> (hkl 111, 002, 022) з максимальною інтенсивністю (J<sub>2</sub> = 100% для 20<sub>2</sub>=43,031 град.; J<sub>3</sub>= 37% для 20<sub>3</sub> = 50,152 град.; J<sub>4</sub> = 23% для 20<sub>4</sub> = 73,809 град.) зі сталими гратки: a, b, c = 0,36303(16) нм,  $\gamma = 90$  град. На дифрактограмі (рис. 3б) виявлений лише один пік малої інтенсивності Cu<sub>2</sub>O (hkl 111) (J<sub>1</sub> = 2% для  $2\theta_1$  = 36,128 град.) зі сталими гратки: a, b, c = 0,43025(0) нм,  $\gamma = 90$  град. Порівняння даних (рис. За та рис. 3б) явно підтверджує, що відновлення Cu<sup>0</sup> відбувається, якщо покриття волокна з підкладкою Ni<sup>0</sup>+Р (перший шар) здійснюється у послідовності нанесення шарів: II(ц)+III(мф), ніж II(мф)+III(ц).

Якщо карбонізоване волокно УТМ-8 з підкладкою Ni<sup>0</sup>+P (перший шар) покрито ще трьома шарами (другий і третій шари – за цинковою, а четвертий – за модифікованою формальдегідною технологіями)  $II(\mu)+III(\mu)+IV(мф)$ , то вміст фази  $Cu^0$  ще більше зростає (рис. Зв), при цьому ця дифрактограма близька до дифрактограми, що зображена на рис. Зб: домінує фаза  $Cu^0$  (hkl 111, 002, 022) з максимальною інтенсивністю (J<sub>2</sub> = 100% для 2 $\theta_2$  = 43,031 град.; J<sub>3</sub> = 37% для  $2\theta_3 = 50,152$  град.;  $J_4 = 23\%$  для  $2\theta_4 =$ 73,809 град.) зі сталими гратки: a, b, c = 0,36292(16) нм,  $\gamma = 90$  град. На дифрактограмі виявлений лише один пік малої інтенсивності Cu<sub>2</sub>O (hkl 111) (J<sub>1</sub> =2% для 2 $\theta_1$  = 36,128 град.) зі сталими гратки: a = 0,43025(0) нм, b, c = 0,42985(0) нм,  $\gamma = 90$  град.). Таким чином, чергування покриття КВ з підкладкою Ni<sup>0</sup>+Р (перший шар) міддю за цинковою, а потім модифікованою формальдегідною технологіями приводить до майже повного відновлення Cu<sub>2</sub>O: домінує тільки фаза Cu<sup>0</sup>.

Якщо карбонізоване волокно з підкладкою Ni<sup>0</sup>+P покрито чотирма шарами II(ц)+III(ц)+IV(ц)+V(мф) (перший шар Ni<sup>0</sup>+P, наступні три шари – за цинковою технологією, а п'ятий шар – за модифікованою формальдегідною технологією), то практично Cu<sub>2</sub>O повністю відновлюється: абсолютно домінує фаза Cu<sup>0</sup> (hkl 111, 002, 022) з максимальною інтенсивністю J<sub>2</sub> = 100% для 2 $\theta_2$  = 43,031 град.; J<sub>3</sub> = 47% для 2 $\theta_3$  = 50,302 град.; J<sub>4</sub> = 23% для 2 $\theta_4$  = 73,809 град. та Cu<sub>2</sub>O (hkl 111) із інтенсивністю J<sub>1</sub>=1% для 2 $\theta_1$  =36,128 град.

Аналогічні процеси спостерігаються, якщо підкладку на карбонізованому волокні УТМ-8 створити із  $Cu^0+Cu_2O$  (перший шар) за цинковою або модифікованою технологією та  $Pb^0$  (другий шар), а наступні шари  $Cu^0+Cu_2O$  нанести за модифікованою формальдегідною та цинковою технологіями.

#### Висновки

**1. Вміст міді Си<sup>0</sup> у покритті Си<sup>0</sup>–Си<sub>2</sub>О** можна збільшити за рахунок багатошарового покриття почергово за цинковою [перші шари: (I); (I+II); (I+II+III)] та за модифікованою формальдегідною [(II); (III); (IV) шари відповідно] технологіями.

**2.** Розроблені технології ніколювання карбонізованих за 1123 К вуглецевих волокон, підданих інтенсивній хемо-механо-активаційній обробці, у вигляді одношарового та багатошарового покриття:  $(Cu^0+Cu_2O)$  (1-й шар) +  $(Ni^0+P)$  (2-й шар) та  $(Ni^0+P)$  (1-й шар) +  $(Cu^0+Cu_2O)$  (2-й шар),  $(Cu^0+Cu_2O)$  (за мф) +  $(Ni^0+P)$  +  $(Cu^0+Cu_2O)$  (за ц) або  $(Ni^0+P)$  +  $(Cu^0+Cu_2O)$  (за ц) +  $(Cu^0+Cu_2O)$  (за мф), де мф – модифікована формальдегідна технологія; ц – цинкова технологія мідніння КВ.

**3.** Створення на поверхні карбонізованого волокна, піданного інтенсивній активації, підкладки Ni<sup>0</sup>+P дозволяє під час подальшого нанесення

- [1] A.s. 407106 (SSSR), MKI F16S33/18 (1972).
- [2] A.s. 704067 (SSSR), MKI S08L77/00 (1978).
- [3] V.M. Lebedev, Plasticheskie massy, 10, 29 (1980).
- [4] A.s. 923162 (SSSR), MKI S08L77/00, C08J5/16/ (1980).
- [5] A.s. 1017002 (SSSR), MKI S08L77/00, C08J5/16/ (1981).
- [6] G.O. Sirenko, Stvorennja antifrikcijnih materialiv na osnovi poroshkiv termotrivkih polimeriv ta vuglecevih
- volokon: Dis. ... dokt. tehn. nauk (In-t problem materialoznavstva im. I.M. Francevicha NANU, Kiiv, 1997).
- [7] A.s. 1604862 (SSSR), MKI S23S18/38; S23S18/54/ (1990).
- [8] A.s. 1736171 (SSSR), MKI C08J5/16; C08L27/18/ (1992).
- [9] A.s. 1723084 (SSSR), MKI C08J5/16; C08L27/18/ (1992).
- [10] A.s. 110292 (SSSR), MKI S08J5/16; S08L27/18/ (1977).
- [11] A.s. 181484 (SSSR), MKI F16C33/12/ (1982).
- [12] A.s. 1078907 (SSSR), MKI S08L27/18; S 08J5/16/ (1984).
- [13] A.s. 194601 (SSSR), MKI F16C33/12/ (1983).
- [14] A.s. 1239134 (SSSR), MKI S08J5/16; S08J5/06/ (1986).
- [15] A.s. 1165048 (SSSR), MKI S08L27/18; S08K3/04/ (1985).
- [16] A.s. 1244933 (SSSR), MKI S08J5/16; S08L27/18/ (1986).
- [17] A.s. 223896 (SSSR), MKI S08L77/10/ (1985).
- [18] A.s. 1635523 (SSSR), MKI C08J5/16; C08L27/18/ (1990).
- [19] A.s. 1584365 (SSSR), MKI S08L77/10/ (1990).
- [20] P.r. №4539382/05/01619 (1992).
- [21] Pat. 1806147 (SSSR), MKI S08J9/26; B01D39/16/ (1993).
- [22] A.s. 1590778 (SSSR), MKI F16J15/20/(1990).
- [23] A.s. 1587300 (SSSR), MKI F16J15/00; F16J15/22/ (1990).
- [24] A.s. 1545584 (SSSR), MKI S08L77/02; S08K13/02/ (1990).
- [25] A.s. 1467893 (SSSR), MKI V32V3/12; D04S5/00; F16C33/12/ (1989).
- [26] A.s. 1460492 (SSSR), MKI F16J15/00/ (1989).
- [27] A.s. 1400040 (SSSR), MKI S08J5/16; S08L77/08/ (1988).
- [28] A.s. 1322664 (SSSR), MKI S08L77/10/ (1987).
- [29] A.s. 558518 (SSSR), MKI S08L77/06/ (1977).
- [30] A.s. 526252 (SSSR), MKI S08L77/00; S08D5/16/ (1976).
- [31] G.O. Sirenko, M.B. Kvich, V.I. Kirichenko, Fizika i himija tverdogo tila, 7 (3), 544 (2006).
- [32] G.O. Sirenko, M.B. Kvich, V.I. Kirichenko, Visnik Prikarp. nac. un-tu im. V.Stefanika. Ser. Himija, V, 84 (2008).
- [33] V.I. Kirichenko, G.A. Sirenko, L.M. Kirichenko, Voprosy himii i himicheskoj tehnologii, 94, 113 (1991).
- [34] G.O. Sirenko, L.M. Soltis, V.I. Kirichenko, V.P. Sviders'kij, M.B. Skladanjuk, Visnik Prikarp. nac. un-tu im. Vasilja Stefanika. Ser. Himija, HIV, 50 (2012).
- [35] E.G. Kendal, Kompozicionnye materialy s metallicheskoj matricej (Mashinostroenie, Moskva, 1978).
- [36] M. Shalkauskas, A. Vashkjalis, Himicheskaja metallizacija plastmass (Himija, Leningrad, 1985).
- [37] A.V. Gorodynskij i dr., Ukr. him. zh., 49 (2), 141 (1984).
- [38] A.N. Jagubec i dr., Jelektronnaja obrabotka materialov, 6, 60 (1973).
- [39] A.N. Jagubec, Zh.I. Babanova, Soveshh. «Novaja tehnologija gal'vanicheskih pokrytij» (Kirov, 1974), s.25.
- [40] A.I. Demidova, V.V. Ivanova, Trudy VNII i proektno-tehnol. in-ta jelektrougol'nyh izdelij (Jenergija, Moskva, 1975).

багатошарового мідного покриття позачергово за цинковою та модифікованою формальдегідною технологіями повністю відновити з Cu<sub>2</sub>O мідь Cu<sup>0</sup>.

*Сіренко Г.О.* – академік АТНУ, доктор технічних наук, професор, завідувач кафедри неорганічної та фізичної хімії;

*Складанюк М.Б.* – аспірант кафедри неорганічної та фізичної хімії;

*Солтис Л.М.* – член-кореспондент АТНУ, кандидат хімічних наук, викладач кафедри неорганічної та фізичної хімії.

- [41] V.P. Buzinova, Zh.I. Babanova, A.N. Jagubec, Izv. AN Mold. SSR. Ser. fiz.-tehn. i mat. nauk, 2, 64 (1976).
- [42] M.V. Novikova, R.G. Golovchanskaja i dr., Jelektrohimija, 19 (7), 960 (1983).
- [43] A.s. 260351 (SSSR) (1976).
- [44] E.I. Saranov i dr., Zashhita metallov, 11 (3), 367 (1975).
- [45] Zajavka 60-2671 Japonii. Homma Noritosi. Rastvor himicheskogo nikelirovanija (1985).
- [46] A.s. 1180404 (SSSR) (1985).
- [47] Zajavka 59-226170 Japonii. Homma Noritosi. Rastvor dlja himicheskogo nikelirovanija (1984); Zajavka
- 59-232261 Japonii. Stabilizacija rastvora himicheskogo nikelirovanija (1984).
- [48] Nakamichi Ichiro i dr., Jap. J. Appl. Phys., 2 (9), 679 (1985).
- [49] I. Bielinaki, Pr. Pwarsz. Chem., 34, 9 (1985).
- [50] W. Anke, H. Kleinz, Metalloberflache, 40 (1), 21 (1986).
- [51] G.Mallory, Plat. and Surface Finish, 72 (11), 64 (1985).
- [52] R.V. Butkene, D.V. Mockute, Issl. v oblasti osazhdenija metallov, 46 (1985).
- [53] A.M. Lunjackas i dr., Issl. v oblasti osazhdenija metallov, 140 (1985).
- [54] G. Shawnan, P. Stapleton, Galvanotechnik, 77 (3), 550 (1986).

[55] Zajavka 60-152679 Japonii. Nakadzava Gjen'iti. Poroshkoobraznyj sostav dlja himicheskogo nikelirovanija (1985).

- [56] K. Stallmann, Galvanotechnik, 77 (7), 1591 (1986).
- [57] A. Weissenberger, Galvanotechnik, 77 (5), 1089 (1986).
- [58] Zajavka 59-170254 Japonii. Goto Hulio, Hosaka Gjecuja. Rastvor dlja himicheskogo nikelirovanija (1984).
- [59] K. Masui i dr., Kindzoku hjomjen gidzjuku. Metal Finish. Soc. Jap., 36 (2), 50 (1985).
- [60] M. Matsuoko, T. Hayashi, Kindzoku hjomjen gidzjuku. Metal Finish. Soc. Jap., 36 (2), 70 (1985).
- [61] S. Yajima i dr., Kindzoku hjomjen gidzjuku. Metal Finish. Soc. Jap., 37 (5), 255 (1986).
- [62] J. Heury, Metal Finish, 82 (9), 93 (1984).
- [63] I.V. Guseva i dr., II Vsesojuznoe soveshh. po zharostojkim pokrytijam (Tula, Leningrad, 1985), s. 103.
- [64] H.P. Zhelis i dr., Tr. AN Lit. SSR, B. №6/151, 3 (1985).
- [65] Z. Cyrus, M. Novotuy, Karossa ochr. mater, 28 (5), 95 (1984).
- [66] R. Narayan, M.N. Mungde, Surface Technol, 24 (3), 233 (1985).
- [67] Shiota Ichiro, Vatanebe Ocenm, Traus Net Rec. Inst., 18 (1), 1 (1976).
- [68] G.-K.K. Kupjatis, Organicheskie soedinenija v jelektrolitah nikelirovanija, Ruk. dep. v Lit. NIINTI 16.09.1985 (In-t himii i him. tehn. AN Lit. SSR, Vil'njus, 1985).
- [69] O.Ju. Nivinskene i dr., Issled. v oblasti osazhdenija metallov, 40 (1985).
- [70] A.Ju. Seloskis, A.P. Dzhjuve, Issl. v oblasti osazhdenija metallov, 51 (1985).
- [71] H.K. Srivastava, P.K. Tisioo, Bull Electrochem., 2 (3), 227 (1986).
- [72] G.A. Di-Bari, Metal Finish (Chast' I), 84 (7), 23 (1986); Metal Finish (Chast' II), 84 (8), 23 (1986).
- [73] N.I. Golego, L.A. Gorbachevskaja, Ju.M. Koval'chuk, Poroshkovaja metallurgija, 11, 5 (1975).
- [74] A.s. 1097718 (SSSR), MKI S 25D 15/a (1984).
- [75] D.C. Lashonere, 70th AES Annu. Techn. Conf. Proc. (Winter Bolk. Fla, 1983), A 2/I-A 2/30.
- [76] A. Knodler i dr., Metallober-flache, 38 (11), 495 (1984).
- [77] R. Kashyap i dr., J. Appl. Electrochem., 15 (1), 23 (1985).
- [78] M. Oufady, E. Clussaing, Vu Quang K., 7 Galvanotech. Symp. (Budapest, 1985), r. 214.
- [79] I.S. Hadjey, 7 Galvanotechn. Symp. (Budapest, 1985), r. 338.
- [80] T.N. Luneva, Ju.M. Dvorjanchikov, Cv. metallurgija, 7, 84 (1985).
- [81] Vu Quang K. i dr., Metal Finish., 83 (10), 25 (1985).
- [82] V.V. Gurilev, O.V. Moiseeva, Osazhdenie splava Cu-Ni iz pirofosfatnogo jelektrolita s vvedeniem dopolnitel'nogo liganda, Ruk. dep. v ONIIGJeHim, g. Cherkassy, 11.04.86, №471-HII (Vladim. polit. in-t, 1986).
- [83] Zajavka 60-125592 Japonii. Kolli Takasi. Jelektroosazhdenie splava Ni-W (1985).
- [84] V.N. Vorypaev, A.E. Gavrikova, I.A. Vinogradov, Prikladnaja jelektrohimija, Teorija, tehnol. i zashhit. sv-va gal'vanich. pokrytij (Kazan', 1985).
- [85] A.Ja. Sychev i dr., Voprosy himii i him. tehnologii, 59 (1986).
- [86] S.S. Rachinskene, D.K. Ramanauskene, Tr. AN Lit. SSR, B., 146 (1), 16 (1985).
- [87] E.V. Kuznecova, G.A. Sadakov, Jelektroosazhdenie splavov Ni-Si, Co-Si, Cu-Si. Gal'vanoplastika v promyshlennosti (Moskva, 1985).
- [88] T.N. Hoperija, Himicheskoe nikelirovanie nemetallicheskih materialov (Metallurgija, Moskva, 1982).
- [89] P. Rakik, V.N. Vuskanovich, K.N. Popov, Glasnik Hem. drugit., 41 (1-2), 55 (1976).

[90] G.O. Sirenko, O.V. Shijchuk, Kompozicijni polimerni materiali, 25 (1), 49 (2003).

## H.O. Sirenko, M.B. Skladanyuk, L.M. Soltys

# Metallization of Carbon Fibers by Double and Triple Copper Composition

Vasyl Stefanyk Precarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine Tel. (0342) 77.64.15; (096) 813.93.53, e-mail: <u>orijant@gmail.com</u>

The theoretical foundations of physics and chemistry and application technology of single- and doublelayer coating based on  $Cu^0+Cu_2O$ ,  $Ni^0+P$ ,  $Pb^0$  on the surface of carbonated fibers have been reviewed. The changes of surface layers crystal structure of carbon fibres in the course of copper-plating have been investigated. The metallic coating process using modified formaldehyde and zinc technology was realized. It is established that copper content in copper – copper oxide increases when using two-layer alternately modified formaldehyde and zinc methods.

Keywords: carbon fibers, polymer composites, nickel plating, copper plating, lead plating.