PACS 61.66.DK

ISSN 1729-4428

V.Ya. Gvozdetskyi, R.E. Gladyshevskii, N.V. German

Multicomponent Phases with CeAl₂Ga₂- and Y_{0.5}Co₃Ge₃-Type Structures in the Gd–Ca–Fe–Co–Ge System

Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine, email: volodymyr.gvozdetskyi@gmail.com

New quinary phases with the CeAl₂Ga₂ (t110, 14/mmm) and Y_{0.5}Co₃Ge₃ (hP8-2, P6/mmm) structure types were found at 500 °C in the Gd-Ca-Fe-Co-Ge system based on X-ray powder diffraction data. They are $Gd_{1-x}Ca_{x}Fe_{2-y}Co_{y}Ge_{2}$ (x = 0.085(7) - 0.551(6), y = 0.25 - 0.75, a = 3.99468(6) - 4.00003(8), c = 10.1279(2) - 0.551(6), c = 10.1279(2), c10.3981(5) Å) and $Ca_{0.5-x}Gd_xFe_{3-y}Co_yGe_3$ (x = 0.031(1)-0.314(8), y = 0.75-2.25, a = 5.1081(1)-5.1218(1), c = 0.031(1)-0.314(8), y = 0.75-2.25, a = 5.1081(1)-5.1218(1), c = 0.031(1)-0.314(8), y = 0.75-2.25, a = 5.1081(1)-5.1218(1), c = 0.031(1)-5.1218(1), c = 0.031(1)-5.128(1), c = 0.031(1)-5.128(1), c = 0.031(1)-5.128(1), c = 0.031(1)-5.128(13.9751(1)-4.0451(2) Å). The c-parameter of the tetragonal CeAl₂Ga₂-type (122) phase cell depends much more on the Fe/Co and Gd/Ca ratios, than the *a*-parameter (which remains nearly the same). The volume of the 122 cell increases with increasing Fe and Ca content. The c-parameter of the hexagonal cell of the Y0.5Co3Ge3-type (0.533) phase also depends more strongly on the Fe/Co content than the *a*-parameter, but Gd/Ca substitutions have little effect on the cell parameters. The following new quaternary and ternary phases were also discovered: $GdFe_{2,v}Co_vGe_2$ (y = 0.5-1.5, a = 3.99419(5)-3.99750(7), c = 10.3271(2)-10.1173(3) Å) with CeAl₂Ga₂-type structure and $Gd_{0.5}Fe_{3-v}Co_{v}Ge_{3}$ (v = 0.75-1.5, a = 5.1247(8) - 5.1225(7),c = 4.052(1) - 4.010(1)Å), $Ca_{0.5}Fe_{3.v}Co_{v}Ge_{3}$ (y = 0.75-2.25, a = 5.1153(2)-5.1066(2), c = 4.0451(2)-3.9839(3) Å), $Ca_{0.5}Fe_{3}Ge_{3}$ (a = 5.10167(9), c = 4.06565(7) Å), and Ca_{0.5}Co₃Ge₃ (a = 5.0899(2), c = 3.9199(1) Å) with Y_{0.5}Co₃Ge₃-type structure. The latter two phases, together with the already known compounds $Gd_{0.5}Fe_3Ge_3$ and $Gd_{0.5}Co_3Ge_3$, are the parent compounds for the probably complete solid solution Ca_{0.5-x}Gd_xFe_{3-y}Co_yGe₃, just as the corresponding ternary compounds (except in the Ca-Fe-Ge system) with CeAl2Ga2-type structures open access to the $Gd_{1-x}Ca_xFe_{2-y}Co_yGe_2$ solid solution.

Keywords: Gd-Ca-Fe-Co-Ge system, intermetallics, solid solution, crystal structure.

Стаття поступила до редакції 25.10.2014; прийнята до друку 15.12.2014.

Introduction

The discovery of superconductivity in $Ba_{0.6}K_{0.4}Fe_2As_2$ [1] has drawn the attention to compounds crystallizing with the CeAl₂Ga₂ (122) structure type (Pearson symbol *tI*10, space group *I*4/*mmm*) [1]. Some 700 compounds with 122-type structure are known in different *R*–*T*–*X* (*A* = alkaline-earth, rare-earth metal, *T* = transition metal, *X* = element of the main group) systems [2], leading to a large number of substitution possibilities.

No compounds were previously known in the quinary Gd-Ca-Fe-Co-Ge system. Concerning the ternary boundary systems Gd-Fe-Ge, Gd-Co-Ge, Ca-Co-Ge, and Fe-Co-Ge, 20 phases have been reported [2]: Gd_{0.5}Fe₃Ge₃ (Y_{0.5}Co₃Ge₃-type structure), GdFe₂Ge₂ (CeAl₂Ga₂-type structure), GdFe_{0.52}Ge₂ (CeNiSi₂-type structure). Gd₁₁₇Fe₅₂Ge₁₁₂ $(Tb_{117}Fe_{52}Ge_{112}-type)$ structure). $Gd_{0.5}Co_3Ge_3$ (Y_{0.5}Co₃Ge₃-type structure), Gd₃Co₄Ge₁₃ (Yb₃Rh₄Sn₁₃-type structure), Gd₂Co₃Ge₅ (Lu₂Co₃Si₅-type structure), GdCo₂Ge₂ (CeAl₂Ga₂-type Gd₂CoGe₆ structure). (Ce₂CuGe₆-type structure). GdCo_{0.8}Ge₂ (CeNiSi₂-type structure), Gd₃Co₂Ge₄

(Tb₃Co₂Ge₄-type structure), GdCoGe (TiNiSi-type structure), Gd₂CoGe₂ (Sc₂CoSi₂-type structure), CaCo₂Ge₂ (CeAl₂Ga₂-type structure), CoFe₂Ge and Co₂FeGe (both Cu₂MnAl-type structure), CoFeGe (BeZrSi-type structure), (Co_{0.4}Fe_{0.6})Ge₂ (CuAl₂-type structure), (Co_{0.9}Fe_{0.9})Ge (Co_{1.75}Ge-type structure), and (Co_{1.5}Fe_{1.5})Ge (BiF₃-type structure). The latter four phases could be solid solutions based on Fe–Ge binaries.

The aim of this work was to search for new multicomponent phases based on Gd, Ca, Fe, Co, and Ge, that adopt the $CeAl_2Ga_2$ (122) structure type.

I. Experiment

Starting materials for the synthesis were ingots of gadolinium, calcium, iron, cobalt, and germanium with purities better than 99.85 %. Quinary alloys with a mass of 0.5 g were synthesized in an arc furnace with a copper water-cooled hearth, using a tungsten electrode under argon atmosphere. The alloys were homogenized in evacuated quartz ampoules at 500°C for 1440 h in a Vulcan A-550 furnace with an automatic temperature

control of ± 1 - 2 °C. The annealed alloys were quenched in cold water without breaking the ampoules. X-ray phase and structural analyses were performed using diffraction data obtained from DRON-2.0M and DRON-4.07 powder diffractometers (Fe K α radiation). For the indexation of the experimental diffraction patterns, theoretical patterns were calculated using the program POWDER CELL-2.4 [3] and the databases TYPIX [4] and PEARSON'S CRYSTAL DATA [2]. Crystal structure refinements by the Rietveld method were performed using the FullProf program [5].

II. Results

At the first stage of the investigation, the crystal

structures of the five-component phases $Gd_{1-x}Ca_xFeCoGe_2$ and $Ca_{0.5-v}Gd_{v}Fe_{1.5}Co_{1.5}Ge_{3}$ were refined [6] on X-ray powder diffraction data (Figs 1 and 2) from an alloy of composition Gd_{1.5}Ca_{0.5}FeCoGe₂ (homogenized at 500°C for two months). The unit-cell parameters of the phase $Gd_{1-x}Ca_xFeCoGe_2$ (structure type $CeAl_2Ga_2$ (122), tI10, I4/mmm, a = 4.00126(9), c =10.1922(3) Å, x = 0.152(8)) are of the same magnitude as those of the isotypic ternary compounds $GdFe_2Ge_2$ (a = 3.9867, *c* = 10.4798 Å) [7,8] and GdCo₂Ge₂ (*a* = 3.996, *c* = 10.066 Å) [8]. Refinement of the structure of the phase $Ca_{0.5-x}Gd_xFe_{1.5}Co_{1.5}Ge_3$ (structure type $Y_{0.5}Co_3Ge_3$) (0.533), hP8-2, P6/mmm, a = 5.1154(2), c = 4.0142(3) Å, x = 0.045(6)) showed mixed occupation Ca/Gd of site 1a (45.5/4.5 %), while a refinement on diffraction data from an as-cast alloy revealed occupation of site 1a by Ca

Fig. 1. XRD pattern (Fe K α radiation) of an alloy of composition Gd_{1.5}Ca_{0.5}FeCoGe₂, homogenized at 500°C, which contains the following phases: 1 – Gd_{0.849(8)}Ca_{0.151(8)}FeCoGe₂ (CeAl₂Ga₂, *I4/mmm*), 2 – Ca_{0.455(6)}Gd_{0.045(6)}Fe_{1.5}Co_{1.5}Ge₃ (Y_{0.5}Co₃Ge₃, *P6/mmm*), 3 – FeCoGe (ZrBeSi, *P6₃/mmc*)

Fig. 2. XRD pattern (Fe Kα radiation) of an as-cast alloy of composition Gd_{1.5}Ca_{0.5}FeCoGe₂, which contains the following phases: 1 – Gd_{0.897(9)}Ca_{0.103(9)}FeCoGe₂ (CeAl₂Ga₂, *I*4/*mmm*), 2 – Ca_{0.5}Fe_{1.5}Co_{1.5}Ge₃ (Y_{0.5}Co₃Ge₃, *P*6/*mmm*), 3 – FeCoGe (ZrBeSi, *P*6₃/*mmc*)

Table 1

$Gd_{1-x}Ca_xFeCoGe_2$ (x = 0.151(8)), structure type CeAl ₂ Ga ₂ , space group <i>I</i> 4/ <i>mmm</i> , a = 4.00126(9), c = 10.1922(3) Å, R _B = 0.0467									
Site	Wyckoff position	x	у	Z	Occupation $B_{\rm iso}$, Å				
Gd/Ca	2a	0	0	0	0.849(8)/0.151(8) 0.47(5)				
Fe/Co	4d	0	1/2	1/4	0.5/0.5	0.51(5)			
Ge	4e	0	0	0.3715(1) 1 0.4					
$Ca_{0.5-x}Gd_xFe_{1.5}Co_{1.5}Ge_3$ (x = 0.045(6)), structure type Y _{0.5} Co ₃ Ge ₃ , space group P6/mmm,									
$a = 5.1154(2), c = 4.0142(3)$ Å, $R_{\rm B} = 0.0933$									
Site	Wyckoff position	x	у	Z	Occupation	$B_{\rm iso},{\rm \AA}^2$			
Ca/Gd	1 <i>a</i>	0	0	0	0.455(6)/0.045(6)	0.47(5)			
Fe/Co	3g	1/2	0	1/2	0.5/0.5	0.51(5)			
Ge1	2c	1/3	2/3	0	1	0.49(5)			
Ge2	2e	0	0	0.290(1)	0.5	0.49(5)			

Crystallographic parameters of the $Gd_{1-x}Ca_xFeCoGe_2$ and $Ca_{0.5-x}Gd_xFe_{1.5}Co_{1.5}Ge_3$ phases (homogenized alloy)

Table 2

Crystallographic parameters of the $Gd_{1-x}Ca_xFeCoGe_2$ and $Ca_{0.5-x}Gd_xFe_{1.5}Co_{1.5}Ge_3$ phases (as-cast alloy)

$Gu_{1-x}Ca_x recode_2 (x = 0.105(9))$, subcure type $CeA_1_2Ga_2$, space group 14/minin,									
$a = 4.00120(8), c = 10.1872(3)$ Å, $R_{\rm B} = 0.0498$									
Site	Wyckoff	r	у	7	Occupation	\mathbf{R} Å ²			
bite	position	л		4.		D _{1SO} , 1 1			
Gd/Ca	2 <i>a</i>	0	0	0	0.897(9)/0.103(9)	0.34(5)			
Fe/Co	4d	0	1/2	1/4	0.5/0.5	0.53(5)			
Ge	4 <i>e</i>	0	0	0.52(4)					
$Ca_{0.5-x}Gd_xFe_{1.5}Co_{1.5}Ge_3$ (x = 0, structure type $Y_{0.5}Co_3Ge_3$, space group P6/mmm,									
$a = 5.1153(2), c = 4.0120(2)$ Å, $R_{\rm B} = 0.0846$									
Site	Wyckoff			z	Occupation	$\mathbf{p} = \hat{\lambda}^2$			
Sile	position	X	У			D_{iso}, A			
Ca/Gd	1 <i>a</i>	0	0	0	0.5/0	0.34(5)			
Fe/Co	3g	1/2	$\frac{1}{2}$ 0 $\frac{1}{2}$ 0.5/0.5		0.5/0.5	0.53(5)			
Ge1	2c	1/3	2/3	0	1	0.52(4)			
Ge2	2 <i>e</i>	0	0	0.293(1)	0.5	0.52(4)			

Fig. 3. Crystal structure of the phases (a) $Gd_{1-x}Ca_xFeCoGe_2$ (CeAl₂Ga₂, *I*4/*mmm*) and (b) $Ca_{0.5-x}Gd_xFe_{1.5}Co_{1.5}Ge_3$ (Y_{0.5}Co₃Ge₃, *P*6/*mmm*)

atoms alone – composition $Ca_{0.5}Fe_{1.5}Co_{1.5}Ge_3$ (a = 5.1153(2), c = 4.0120(2) Å). Because of the closeness of the atomic scattering factors of Fe and Co, their content ratio cannot be accurately refined from X-ray diffraction data and was constrained in this and the following refinements to its value in the nominal composition of the alloy. Relevant crystallographic parameters of the refined structures are listed in Table 1 and Table 2. Models of the 122 and 0.533 structures are presented in

Fig. 3. The result, indicating the coexistence of two phases (122 and 0.533) in the alloy with 122 overall composition, motivated more detailed investigations, and additional alloys were synthesized with the compositions given in Table 3.

The diffraction patterns of all of the samples contained 122 and 0.533 phases and small amounts (less than 5 %) of additional ternary and binary phases (among

Table 3

Nominal composition of the alloy: $Gd_{0.25}Ca_{0.75}Fe_{0.5}Co_{1.5}Ge_2$, refined composition: $Gd_{0.27}Ca_{0.35}Fe_{0.50}Co_{1.50}Ge_2$, molar ratio 122/0.533 = 0.53/0.47								
Phase 122	Cell para	meters, Å	Volume,	Phase 0 533	Cell parameters, Å		Volume,	
	а	С	Å ³	1 hase 0.555	а	С	Å	
$\begin{array}{c}Gd_{0.610(7)}Ca_{0.390(7)}\times\\\times Fe_{0.5}Co_{1.5}Ge_{2}\end{array}$	3.99608(8)	10.2034(3)	162.93(1)	$\begin{array}{c} Ca_{0.469(3)}Gd_{0.031(3)}\times\\ \times Fe_{0.75}Co_{2.25}Ge_{3}\end{array}$	5.1081(1)	3.9751(1)	89.825(6)	
Nominal composition of the alloy: $Gd_{0.5}Ca_{0.5}Fe_{0.5}Co_{1.5}Ge_2$, refined composition: $Gd_{0.55}Ca_{0.25}Fe_{0.50}Co_{1.50}Ge_2$, molar ratio 122/0.533 = 0.78/0.22								
$\begin{array}{c} Gd_{0.793(8)}Ca_{0.207(8)}\times\\ \times Fe_{0.5}Co_{1.5}Ge_2\end{array}$	3.99644(7)	10.1526(3)	162.15(1)	Ca _{0.5} Fe _{0.75} Co _{2.25} Ge ₃	5.1066(2)	3.9839(3)	89.97(1)	
Nominal co	mposition of th	e alloy: Gd _{0.75} mo	Ca _{0.25} Fe _{0.5} Co _{1.5} lar ratio 122/0.1	Ge ₂ , refined compositio $533 = 0.83/0.17$	n: Gd _{0.71} Ca _{0.1}	₄ Fe _{0.50} Co _{1.50} G	e ₂ ,	
$\begin{array}{c}Gd_{0.910(7)}Ca_{0.090(7)}\times\\\times Fe_{0.5}Co_{1.5}Ge_{2}\end{array}$	3.99682(6)	10.1279(2)	161.789(8)	$\begin{array}{c} Ca_{0.457(3)}Gd_{0.043(3)}\times\\ \times Fe_{0.75}Co_{2.25}Ge_{3}\end{array}$	5.1106(2)	3.9869(3)	90.18(1)	
Nominal c	omposition of	the alloy: Gd _{0.2} mo	₅ Ca _{0.75} Fe ₁ Co ₁ C lar ratio 122/0.	Ge_2 , refined composition 533 = 0.52/0.48	$: Gd_{0.29}Ca_{0.36}I$	Fe _{1.00} Co _{1.00} Ge	2,	
$\begin{array}{c} Gd_{0.558(7)}Ca_{0.442(7)}\times\\ \times Fe_{1}Co_{1}Ge_{2}\end{array}$	4.00003(8)	10.2518(3)	164.03(1)	$\begin{array}{c} Ca_{0.450(3)}Gd_{0.050(3)}\times\\ \times Fe_{1.5}Co_{1.5}Ge_{3}\end{array}$	5.1150(1)	4.0079(1)	90.811(6)	
Nominal composition of the alloy: $Gd_{0.5}Ca_{0.5}Fe_1Co_1Ge_2$, refined composition: $Gd_{0.51}Ca_{0.17}Fe_{1.00}Co_{1.00}Ge_2$, molar ratio 122/0.533 = 0.61/0.39								
$\begin{array}{c} Gd_{0.884(6)}Ca_{0.116(6)}\times\\ \times Fe_{1}Co_{1}Ge_{2}\end{array}$	3.99949(6)	10.1922(2)	163.03(1)	$\begin{array}{c} Ca_{0.319(4)}Gd_{0.181(4)}\times\\ \times Fe_{1.5}Co_{1.5}Ge_{3}\end{array}$	5.1162(1)	4.0105(1)	90.913(6)	
Nominal composition of the alloy: $Gd_{0.75}Ca_{0.25}Fe_{1.5}Co_{1.5}Ge_2$, refined composition: $Gd_{0.66}Ca_{0.14}Fe_{1.00}Co_{1.00}Ge_2$, molar ratio 122/0.533 = 0.78/0.22								
$\begin{array}{c} Gd_{0.915(7)}Ca_{0.085(7)}\times\\ \times Fe_{1}Co_{1}Ge_{2}\end{array}$	3.99903(6)	10.1915(2)	162.985(8)	$\begin{array}{c} Ca_{0.186(8)}Gd_{0.314(8)}\times\\ \times Fe_{1.5}Co_{1.5}Ge_{3}\end{array}$	5.1190(2)	4.0168(3)	91.16(1)	
Nominal composition of the alloy: $Gd_{0.25}Ca_{0.75}Fe_{1.5}Co_{0.5}Ge_2$, refined composition: $Gd_{0.24}Ca_{0.45}Fe_{1.50}Co_{0.50}Ge_2$, molar ratio 122/0.533 = 0.63/0.37								
$\begin{array}{c} Gd_{0.449(6)}Ca_{0.551(6)}\times\\ \times Fe_{1.5}Co_{0.5}Ge_2\end{array}$	3.9976(1)	10.3981(5)	166.17(2)	Ca _{0.5} Fe _{2.25} Co _{0.75} Ge ₃	5.1135(2)	4.0451(2)	91.60(1)	
Nominal composition of the alloy: $Gd_{0.5}Ca_{0.5}Fe_{1.5}Co_{0.5}Ge_2$, refined composition: $Gd_{0.51}Ca_{0.17}Fe_{1.50}Co_{0.50}Ge_2$, molar ratio 122/0.533 = 0.62/0.38								
$\begin{array}{c} Gd_{0.882(6)}Ca_{0.118(6)}\times\\ \times Fe_{1.5}Co_{0.5}Ge_2 \end{array}$	3.99612(6)	10.3272(2)	164.915(8)	$\begin{array}{c} Ca_{0.325(4)}Gd_{0.175(4)}\times\\ \times Fe_{2.25}Co_{0.75}Ge_{3}\end{array}$	5.1189(1)	4.0410(1)	91.70(1)	
Nominal composition of the alloy: $Gd_{0.75}Ca_{0.25}Fe_{1.5}Co_{0.5}Ge_2$, refined composition: $Gd_{0.63}Ca_{0.12}Fe_{1.50}Co_{0.50}Ge_2$, molar ratio 122/0.533 = 0.71/0.29								
$ \begin{matrix} Gd_{0.909(7)}Ca_{0.091(7)}\times \\ \times Fe_{1.5}Co_{0.5}Ge_2 \end{matrix} \\$	3.99468(6)	10.3249(2)	164.759(8)	$\begin{array}{c} Ca_{0.263(8)}Gd_{0.237(8)}\times\\ \times Fe_{2.25}Co_{0.75}Ge_{3}\end{array}$	5.1218(1)	4.0436(3)	91.86(1)	

Cry	vstallographic	narameters of th	e Gd.	Ca Fea	Co Geo	and Cao	- Gd Fea	Co Gea	nhases
UI.	ystanographic	parameters of th	c Ou	$-x Ca_x Ca_x C_2$	$v_v C O_v C O_2$	and Ca _{0.}	$5-x O u_x I O 3$	vCOvOC3	phases

them $(Co,Fe)_2Ge$ (structure type $Co_{1.75}Ge$, *hP*6, *P*6₃/*mmc*), Ca₇Ge (CuPt₇, *cF*32, *Fm*-3*m*), GdGe_{1.5} (AlB₂, *hP*3, *P*6/*mmm*), *etc.*).

The calculation of the composition of the alloys for each case is shown in Table 3.

III. Discussion

The refinements carried out on the samples listed in Table 3, showed that the alloy compositions are located in a concentration region between the 122 and 0.533 phases (Fig. 4), obviously because of losses of Ca during arc-melting (unfortunately the weight losses were always in the range 3-5 %).

Considering the values of the cell parameters of the 122 and 0.533 phases (see Table 3), the following conclusions can be drawn: the c-parameter of the

tetragonal 122 cell depends more on the Fe/Co and Gd/Ca ratios than the *a*-parameter (the latter remaining nearly the same). The volume of the 122 cell increases with increasing Fe and Ca content. The c-parameter of the hexagonal 0.533 cell is also more dependent on the Fe/Co content than the a-parameter, but Gd/Ca substitutions have no strong effect on the cell parameters. Contrary to what was observed for the 122 phase, the cell volume of the 0.533 phase increases with decreasing Ca content. The results are shown in Figs 5 and 6, which also take into consideration information (Table 4) about quaternary and ternary phases obtained for other alloys: $GdFe_{1.5}Co_{0.5}Ge_2$ (122 phase), $GdFeCoGe_2$ (122), $GdFe_{0.5}Co_{1.5}Ge_2$ (122), CaCo₂Ge₂ (122),Gd_{0.5}Fe_{2.25}Co_{0.75}Ge₃ (0.533), Gd_{0.5}Fe_{1.5}Co_{1.5}Ge₃ (0.533), Ca_{0.5}Co₃Ge₃ (0.533) [9], Ca_{0.5}Fe₃Ge₃ (0.533), and from [7,8] – GdFe₂Ge₂ (122), Gd_{0.5}Fe₃Ge₃ (0.533), and GdCo₂Ge₂ (122), and Gd_{0.5}Co₃Ge₃ (0.533) from [10].

Fig. 4. 122 and 0.533 solid solutions in the quinary Gd–Ca–Fe–Co–Ge system.

Fig. 5. Cell volume *versus* Gd_{1-x}Ca_x composition of the 122 solid solution in the quinary Gd–Ca–Fe–Co–Ge system.

Fig. 6. Cell volume *versus* $Ca_{0.5-x}Gd_x$ composition of the 0.533 solid solution in the quinary Gd–Ca–Fe–Co–Ge system.

Table 4

Dhaga 122	Cell para	ameters, Å	Volume $Å^3$	Dafaranaa	
Fliase 122	а	a c		KUUUUUU	
GdFa.Ga	3.9867	10.4798	166.56	[7]	
00102002	3.989	10.485	166.84	[8]	
$GdFe_{1.5}Co_{0.5}Ge_2$	3.99419(5)	10.3271(2)	164.754(7)	this work	
GdFeCoGe ₂	3.99915(7)	10.2055(2)	163.218(9)	this work	
GdFe _{0.5} Co _{1.5} Ge ₂	3.99750(7)	10.1173(3)	161.67(6)	this work	
GdCo ₂ Ge ₂	3.996	10.066	160.73	[8]	
	4.0011(8)	10.291(4)	164.7(1)	this work	
	3.9900	10.298	163.95	[9]	
Phase 0 533	Cell para	ameters, Å	Volume $Å^3$	Deference	
1 hase 0.555	а	С	volume, A	Kelefence	
Gd _{0.5} Fe ₃ Ge ₃	5.1176	4.0714	92.49	[9]	
$Gd_{0.5}Fe_{2.25}Co_{0.75}Ge_3$	5.1225(7)	4.052(1)	92.08(5)	this work	
$Gd_{0.5}Fe_{1.5}Co_{1.5}Ge_{3}$	5.1247(8)	4.010(1)	91.25(5)	this work	
Gd _{0.5} Co ₃ Ge ₃	5.096	3.931	88.41	[10]	
$Ca_{0.5}Fe_3Ge_3$	5.10167(9)	4.06565(7)	91.641(5)	this work	
$Ca_{0.5}Co_3Ge_3$	5.0899(2)	3.9199(1)	87.948(9)	this work	

Crystallographic parameters of quaternary and ternary 122 and 0.533 phases in the Gd–Fe–Co–Ge, Gd–{Fe,Co}–Ge and Ca–{Fe,Co}–Ge systems

Conclusions

The new quinary phases $Gd_{1-x}Ca_xFe_{2-y}Co_yGe_2$ (x = 0.085(7)-0.551(6), y = 0.25-0.75, a = 3.99468(6)-4.00003(8), c = 10.1279(2) - 10.3981(5) Å), with CeAl₂Ga₂-type structure (tI10, I4/mmm),and $Ca_{0.5-x}Gd_xFe_{3-y}Co_yGe_3$ (x = 0.031(1)-0.314(8), y = 0.75-2.25, a = 5.1081(1) + 5.1218(1), c = 3.9751(1) + 4.0451(2)Å), with $Y_{0.5}Co_3Ge_3$ -type structure (*hP8-2*, *P6/mmm*), were found at 500°C in the Gd-Ca-Fe-Co-Ge system. The regions of solid solutions indicated above were deduced from structural refinements of various samples, however, the existence of complete solid solutions based on the ternary compounds cannot be ruled out. The new quaternary 122 phase GdFe_{2-v}Co_vGe₂ (y = 0.5-1.5, a =3.99419(5)-3.99750(7), c = 10.3271(2)-10.1173(3) Åand the 0.533 phases $Gd_{0.5}Fe_{3-y}Co_yGe_3$ (y = 0.75-1.5, a = c = 4.052(1) - 4.010(1) Å), 5.1247(8)-5.1225(7), Ca_{0.5}Fe_{3-v}Co_vGe₃ (y = 0.75 - 2.25,a = 5.1135(2)-5.1066(2), c = 4.0451(2)-3.9839(3) Å), $Ca_{0.5}Fe_3Ge_3$ (a =

5.10167(9), c = 4.06565(7) Å), and Ca_{0.5}Co₃Ge₃ (a = 5.0899(2), c = 3.9199(1) Å), were also found during the investigation. The observations raise the question concerning the possible existence of complete multicomponent solid solutions Gd_{1-x}Ca_xFe_{2-y}Co_yGe₂ and Ca_{0.5-x}Gd_xFe_{3-y}Co_yGe₃ between the boundary ternary compounds.

Acknowledgments

This work was supported by the Ministry of Education and Sciences of Ukraine under the grants No. 0112U001279 and No. 0112U001280.

Gvozdetskyi V.Ya. – post-graduate student at the Department of Inorganic Chemistry;

Gladyshevskii R.E. – Corresponding Member of the National Academy of Sciences of Ukraine,

Director of the Department of Inorganic Chemistry;

German N.V. – Director of the Laboratory of Inorganic Chemistry and X-Ray Structure Analysis, Department of Inorganic Chemistry.

- [1] M. Rotter, M. Tegel, D. Johrendt, Superconductivity at 38 K in the iron arsenide $(Ba_{1-x}K_x)Fe_2As_2$, Phys. Rev. Lett. 101, 1 (2009).
- [2] P. Villars, K. Cenzual (Eds.), Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds (Materials Park (OH): ASM International, 2012).
- [3] W. Kraus, G. Nolze, PowderCell for Windows, Federal Institute for Materials Research and Testing (Berlin, 1999).
- [4] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer-Verlag, Berlin, Vols. 1-4, 1993/1994).
- [5] J. Rodríguez-Carvajal, Recent developments of the program FULLPROF, IUCr Newsletter 26, 12 (2001).
- [6] V. Gvozdetskyi, N. German, R. Gladyshevskii, Quinary phases with CeAl₂Ga₂ and Y_{0.5}Co₃Ge₃ structure types (Coll. Abstr. XIII Int. Sem. Phys. Chem. Solids, Lviv, 2012), p. 39.

- [7] V. Gvozdetskyi, N. German, R. Gladyshevskii, Phase equilibria in the Gd–Fe–{Ga,Ge}–Sb system at 500°C. Crystallographic parameters of the GdFe₂Ge₂ and GdFe_{0.52}Ge₂ compounds, Visn. Lviv. Univ., Ser. Khim. 53, 12 (2012).
- [8] W. Rieger, E. Parthé, Ternäre Erdalkali- und Seltene Erdmetall-Silicide und Germanide mit ThCr₂Si₂-Struktur, Monatsh. Chem. 100, 444 (1969).
- [9] G. Venturini, B. Malaman, X-ray single crystal refinements on some RT_2 Ge₂ compounds (R = Ca, Y, La, Nd, U; T = Mn-Cu, Ru-Pd): evolution of the chemical bonds, J. Alloys Comp. 235, 201 (1996).
- [10] W. Buchholz, H.U. Schuster, Intermetallische Phasen mit B35-Überstruktur und Verwandtschaftsbeziehung zu LiFe₆Ge₆, Z. Anorg. Allg. Chem. 482, 44 (1981).

В.Я. Гвоздецький, Р.Є. Гладишевський, Н.В. Герман

Багатокомпонентні фази зі структурами типів CeAl₂Ga₂ та Y_{0,5}Co₃Ge₃ у системі Gd–Ca–Fe–Co–Ge

Кафедра неорганічної хімії, Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія 6, 79005 Львів, <u>volodymyr.gvozdetskyi@gmail.com</u>

За результатами ренгенофазового та рентгеноструктурного аналізу у системах Gd-Ca-Fe-Co-Ge при 500°С знайдено нові п'ятикомпонентні фази зі структурами типів CeAl₂Ga₂ (*t*110, *I*4/*mmm*) та Y_{0.5}Co₃Ge₃ (hP8-2, P6/mmm): Gd_{1-x}Ca₂Fe_{2-y}Co_yGe₂ (x = 0.085(7)-0.551(6), y = 0.25-0.75, a = 3.99468(6)-4.00003(8), c = 0.085(7)-0.551(6) 10.1279(2)-10.3981(5) Å) ta Ca_{0.5-x}Gd_xFe_{3-y}Co_yGe₃ (x = 0.031(1)-0.314(8), y = 0.75-2.25, a = 5.1081(1)-0.314(8) 5.1218(1), c = 3.9751(1)-4.0451(2) Å). Параметр с тетрагональної комірки структури типу CeAl₂Ga₂ (122) більшою мірою залежить від співвідношення Fe/Co та Gd/Ca, ніж параметр a (залишається майже однаковим). Таким чином, із збільшенням вмісту Fe та Ca, об'єм комірки закономірно збільшується. Параметр с гексагональної комірки структури типу Y_{0.5}Co₃Ge₃ (0.533) також більшою мірою залежить від співвідношення Fe/Co, ніж параметр a, проте заміщення Gd/Ca майже не впливає на значення параметрів комірки. Нові тетрарні та тернарні фази були також знайдені: $GdFe_2$, Co_yGe_2 (y = 0.5-1.5, a = 3.99419(5)-3,99750(7), *c* = 10,3271(2)-10,1173(3) Å) зі структурою типу CeAl₂Ga₂ та Gd_{0.5}Fe_{3-y}Co_yGe₃ (*y* = 0,75-1,5, *a* = 5,1247(8)-5,1225(7), c = 4,052(1)-4,010(1) Å), Ca_{0,5}Fe_{3-y}Co_yGe₃ (y = 0,75-2,25, a = 5,1153(2)-5,1066(2), c = 1,0,0,0,04,0451(2)-3,9839(3) Å), $Ca_{0.5}Fe_3Ge_3$ (a = 5,10167(9), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2), c = 4,06565(7) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,0899(2) Å) ta $Ca_{0.5}Co_3Ge_3$ (a = 5,089(2) for a = 5,089(2) for 3,9199(1) Å) зі структурою типу Y0,5Co3Ge3. Останні дві фази разом із раніше відомими сполуками Gd05Fe3Ge3 та Gd05Co3Ge3 є граничними складами із можливого неперервного твердого розчину Са_{0.5-х}Gd_xFe_{3-у}Co_yGe₃, як і відповідні тернарні сполуки (окрім системи Са-Fe-Ge) зі структурою типу CeAl₂Ga₂ є граничними складами розчину Gd_{1-x}Ca_xFe_{2-y}Co_yGe₂.

Ключові слова: система Gd-Ca-Fe-Co-Ge, інтерметаліди, твердий розчин, кристалічна структура.