УДК 53.083.98; 538.971; 538.975

SSN 1729-4428

В.В. Мокляк

Особливості кристалічної структури епітаксійних LaGa заміщених плівок залізо-ітрієвого ґранату. Визначення ступеня дефектності

Інститут металофізики ім. Г. В. Курдюмова НАН України, бульв. Акад. Вернадського, 36, 03680, МСП, Київ-142, Україна, <u>mvvmcv@mail.ru</u>

Результати досліджень проведених у даній роботі формують цілісну картину деформацій набутих плівкою в процесі росту та післяростової обробки За допомогою комплексного термодинамічного та кристалохімічного аналізу проведено оцінку наявності технологічних домішок в структурах LaGa:ЗІІ/ІТГ, і вивчено їхній вплив на структурну досконалість плівок, а також приведено результати відновлення із даних рентгенодифрактометричної тензометрії повного тензора деформацій та недіагональних елементів тензора дисторсії, які виникають в епітаксійній гетероструктурі в процесі вирощування та при подальшій технологічній обробці. Встановлено наявність значної анізотропії планарних механічних характеристик епітаксійних плівок, які виникають після їх порізки.

Ключові слова: залізо-ітрієвий гранат, епітаксіальні ферит-гранатові плівки, рідкофазна епітаксія, тензор деформації, дислокації невідповідності.

Стаття поступила до редакції 12.09.2014; прийнята до друку 15.12.2014.

Вступ

LaGa - заміщені епітаксійні плівки залізо-ітрієвого гранату (ЗІІ) були створені як матеріал з підвищеною термостабільністю намагніченості та поля феромагнітного резонансу для використання в мікрохвильових пристроях, які працюють на магнітостатичних хвилях [1-3]. Заміщення в плівках ЗІҐ іонів Fe³⁺ на немагнітні іони Ga³⁺ дозволяє підвищити температурну стабільність резонансного поля, однак при цьому зростає ширина лінії феромагнітного резонансу (ФМР) [1]. Для компенсації зменшення параметру сталої гратки, яке пов'язано із таким заміщенням, в структуру гранату вводять іони La³⁺, які володіють великим іонним радіусом. Окрім того, дослідження проведені в [2] показали, що епітаксійні плівки LaGa:ЗІГ характеризуються більш високою термостабільністю магнітних параметрів порівняно із Ga:ЗІГ. Дана робота присвячена аналізу структурної досконалості вказаних структур з метою врахування впливу даного фактору при їх подальшій обробці та застосуванні.

I. Методика експерименту

Для експерименту використано епітаксійні плівки LaGa:ЗІГ, вирощені методом рідкофазної епітаксії (РФЕ) на підкладці із гадоліній-галієвого

гранату ГГГ з площиною зрізу (111), згідно із розробленим авторами [1] технологічним процесом для отримання високоякісних плівок ЗІІ з вузькою лінією $\Phi MP \le 0.5 E$ (40 *A/м*) АУЭ.01001.00001 ТУ. Умови росту плівок та значення молярних коефіцієнтів Бленка-Нільсена представлені в табл. 1. Аналіз структурної досконалості гетероструктур LaGa:ЗІГ/ГГГ проведено із застосуванням комплексного підходу запропонованого в [4]. Для визначення параметру сталої гратки досліджуваних плівок аекся та для відновлення параметрів ромбоедричної структури нами було проведено прецизійні вимірювання міжплощинної відстані для рефлексів (444), (888), (880) та (4810). Вимірювання проводилися на двокристальному рентгенівському спектрометрі ДРОН-2.0 в Сикал випромінюванні, в якості кристала-монохроматора використовувався високодосконалий кристал ГГГ, вирізаний паралельно площині (111) і встановлений під кутом $\theta = 59,53^\circ$. Похибка визначення експериментального значення параметру сталої ґратки становить $\pm 0,0007$ Å. Розрахунок теоретичних значень параметрів сталих кристалічних ґраток здійснювався за формулою Строка [5].

Для визначення тензора малих деформацій та відновлення тензора залишкових напруг в епітаксійній плівці YIG-13 (табл. 1) застосовано метод рентгенодифрактометричної тензометрії [6, 7], суть якого полягає в отриманні кривих дифракційного відбивання

~	-1
annung	
aoungn	_
,	

F F F F F F F F F F F F F F F F F F F							
Вміст іонів заміщення та молярні коефіцієнти Бленка-Нільсена:							
	X	Z	R_1	R_2	R_3	R_4	R_5
YIG-13	0,1	0,093	30	50	15,6	0,14	6,37
YIG-25	0,45	0,12	30	27,8	15,6	0,14	4,76
YIG-35	0,7	0,143	30	16,8	15,6	0,143	4
YIG-51	0,8	0,2	30	7,7	15,6	0,151	2,86

Молярні коефіцієнти Бленка-Нільсена та умови росту епітаксійних гетероструктур LaGa:ЗІІ/ГП

		1						
	Товщ.плівки:		Умови росту:					
	$h_{n\pi}, \cdot 10^{-6} M$	T_S, K	Т _G , К	$\Delta T, K$	V, ·10 ⁻⁹ м/с			
YIG-13	3,66	1264	1248	16	0,15			
YIG-25	3,44	1258	1234	24	0,16			
YIG-35	3,06	1253	1230	23	0,16			
YIG-51	2,19	1250	1236	14	0,12			

Примітка: Х та z – прогнозований вміст іонів Ga³⁺ та La³⁺ в плівці (ат./форм. од); V – швидкість росту; T_s – температура насичення розчину-розплаву; T_G – температура росту плівок

в умовах симетричної і несиметричної дифракції для досліджуваного зразка. Було використано наступні рефлекси:

- для симетричної дифракції (444), (888);
- для несиметричної дифракції:
- при $\alpha = 0^{\circ} (884);$
- при $\alpha = 90^{\circ} (864);$
- при довільному куті $\alpha = 117^{\circ} (664)$.

На рис. 1 представлено введену лабораторну систему координат та показано її зв'язок із кристалографічними напрямками у досліджуваному зразку та його формою.

Рис. 1. Прив'язка лабораторної системи координат д кристалографічних напрямків у досліджуваном зразку та до його форми.

II. Результати та їх обговорення

2.1. Аналіз структурної досконалості гетероструктур LaGa:ЗІГ/ГГГ.

Результати теоретично та експериментально знайдених величин параметра кристалічної гратки, а також параметрів ромбоедричної структури епітаксійних плівок LaGa:ЗІІ/ҐІҐ представлено в табл. 2. Як бачимо усі плівки "ромбоедризуються" за схемою запропонованою в [4] із параметрами ромбоедричної структури $a_{pom\delta}$ та $\alpha > 90^\circ$. Критерії можливості виникнення та існування дислокацій невідповідності: $h_{res} > h_{res}$ [8]

$$h_{n\pi} > h_{\kappa p}$$
 [8]

$$f = \frac{|a_{n\pi} - a_{n\partial}|}{a_{n\partial}} \ge 10^{-3}$$
[9]

$$f \neq \left| \cos a \right|$$
 [10]

виконуються не для всієї серії плівок. Товщини усіх плівок рівні 2-4·10⁻⁶ *м*, в той час як $h_{\kappa p} \approx 0,4\cdot10^{-6}$ *м*, тобто маємо виконання умови $h_{n,r} > h_{\kappa p}$. Другий критерій виконується не для усіх зразків, величина невідповідності *f* для зразків YIG-25 та YIG-35 є меншою < 10⁻³ (табл. 3), і таким чином у цих плівках не повинні утворюватися дислокації невідповідності.

Таблиця 2						
/	a _{експ} , Å	a _{meop} , Å	<i>а_{ромб},</i> Å	α, °		
YIG-13	12,3745	12,3831	12,3764	90,0028		
YIG-25	12,3772	12,3812	12,3796	90,0095		
YIG-35	12,3778	12,3802	12,3797	90,0059		
YIG-51	12,3716	12,3846	12,3730	90,0033		

Примітка: а_{експ} – значення розраховане згідно [за рефлексом (888) у припущенні кубічн структури.

Згідно розрахунків для зразків YIG-25 та YIG-35 не виконується також і третій критерій, і для них характерним є процес деформації кристалічної гратки до практично повного узгодження параметрів сталих кристалічних граток (табл. 3) без утворення дисло-

Таблиця 3

	$f, \cdot 10^{-3}$	$\cos \alpha$, $\cdot 10^{-3}$	$\sigma, \cdot 10^{11} \text{m}^{-2}$	$\mathbf{\epsilon}_{zz}, \cdot 10^{-4}$	$\left a_{\delta\hat{a}\hat{i}\delta} - a_{\delta\hat{i}\hat{i}\hat{a}}\right , \cdot 10^{-3} \text{ Å}$
YIG-13	0,45	0,05	0,6	-6,1	6,7
YIG-25	0,19	0,17	_	-3,4	1,6
YIG-35	0,19	0,12	-	-3,3	0,5
YIG-51	0,73	0,06	1,6	-8,1	11,6

кацій невідповідності, оскільки виконується рівність $f = |\cos a|$. Процес ромбоедризації в плівках YIG-13 та YIG-51 проходить із утворенням дислокацій невідповідності з максимальними значеннями їх поверхневої густини 0,6·10¹¹ м⁻² та 1,6·10¹¹ м⁻² відповідно.

Експериментальна оцінка значень компоненти тензора деформації плівок в напрямі росту гетероструктур є_{гг} згідно методики [7] показала (табл. 3), що усі плівки стискаються в напрямі росту, тобто підтверджується схема ромбоедризації запропонована в [4]. Порядок величини деформації в усіх випадках становить $\approx 10^{-4}$, що є доволі відчутною величиною з якою необхідно рахуватися при подальшому використанні та цілеспрямованій модифікації даної серії зразків. Динаміка зміни кількісних значень величини компоненти деформації є₂₂ добре корелює із поведінкою експериментальної величини неузгодженості f, однак дещо відмінна від динаміки зміни величини розузгодження теоретично розрахованого значення сталої ґратки та параметра ромбоедричної структури $a_{meop} - a_{pomb}$. Для зразків YIG-25 та

YIG-35 ситуація яка склалась є цілком закономірною. Тобто ми маємо малу експериментальну величину неузгодженості $f < 10^{-3}$, що зумовлює відсутність дислокацій в даних зразках, і також у нас є практично рівні і малі за величиною значення розузгодженостей теоретично розрахованого значення сталої гратки та параметра ромбоедричної структури $|a_{\partial did} - a_{\partial lid}|$. А отже, відповідно ми отримуємо найменші значення компоненти тензора деформації ε_{zz} .

Факт наявності відмінної від нуля величини розузгодження $|a_{\partial a i \partial} - a_{\partial i i a}|$ в плівках YIG-13 та YIG-51 говорить про невідповідність реального складу плівки і теоретично очікуваного. Разом із тим для цих плівок виконується нерівність:

$$a_{\hat{a}\hat{e}\tilde{n}\tilde{i}} < a_{\delta\hat{i}\hat{i}\hat{d}} < a_{\delta\hat{a}\hat{i}\delta}$$

Існує два можливі і, в деякій степені, конкурентні механізми виконання даної нерівності:

1. Додаткове входження в структуру вирощуваних плівок підчас процесу РФЕ катіонів із малим іонним радіусом, зокрема іонів Ga³⁺, що може бути зумовлено збільшенням концентрації оксиду галію у вихідній шихті в результаті підтравлювання підкладки та можливим збільшенням коефіцієнта входження іонів Ga³⁺.

2. Зменшення коефіцієнта входження великих іонів La³⁺ в структуру вирощуваних плівок, внаслідок чого і формується структура із неповністю скомпенсованим параметром кристалічної гратки.

Входження в структуру плівки домішкових

немагнітних іонів Ga³⁺ обов'язково повинно вплинути на магнітну структуру даного зразка. Натомість немагнітні іони La³⁺, які заміщають катіони основного складу Y^{3+} у додекаедричних

Рис.2 Залежність теоретично розрахованої для очікуваного складу (– ■ –) та експериментально визначеної (– • –) величини намагніченості насичення від вмісту немагнітних іонів Ga³⁺.

позиціях, не вносять спотворення у магнітну структуру плівок.

З метою розділення вкладів двох вищезгаданих механізмів нами було проведено вимірювання величини намагніченості насичення. Для неруйнівного контролю величини намагніченості насичення епітаксійних ферит-гранатових плівок (ЕФІП) було застосовано один із різновидів індукційних методів вимірювання, а саме метод індукційного гістеріографа. Вимірювання проводилися на спеціалізованій апаратурі НВП "Карат" (м. Львів) [11]. Отримані таким чином експериментальні значення величини намагніченості насичення представлено в табл. 4 та на рис. 2.

Для теоретичної оцінки величини намагніченості насичення гетероструктур LaGa:ЗІІ/ГІТ очікуваного складу та проведення кількісного аналізу домішкових немагнітних іонів Ga³⁺ нами було застосовано методику, яка грунтується на теорії молекулярного поля Нееля, розвинутою Діоне [12-14]. В даному випадку ми скористалися двопідгратковою моделлю, оскільки іони Y³⁺ та La³⁺ є немагнітними (електронна конфігурація d⁰).

При заміщенні катіонів основного складу іонами Ga³⁺ функції $C_i(x)$, які враховують ефекти діамагнітного заміщення в підгратках ґранату на намагніченість при T = 0K, будуть мати вигляд [14, 15]:

 $C_{a}(x) = 1 - 2, 2 \cdot (x/3)^{6}$

Таблиця 4

	X	Δx	Z.	Δz	$4\pi M_{s_T}$, Γc	$4\pi M_{S_E}$, Γc
YIG-13	0,1	0,18	0,093	0,043	1640	1310
YIG-25	0,45	0,07	0,120	0,006	1040	960
YIG-35	0,7	0,02	0,143	0,001	660	620
YIG-51	0,8	0,32	0,200	0,068	525	145

Примітка: розмірність X, Δx , z, $\Delta z - (am./\phi opm. od.)$

$$C_d(y) = 1 - 70,02 \cdot y - 2 \cdot (y/2)^4$$

де у та x – вміст іонів Ga³⁺ відповідно в окта- та тетрапідгратці. Залежність коефіцієнтів молекулярного поля від заміщення в підгратках описувалась наступним чином [15]:

$$N_{ij}(x, y) = N_{ij}(0, 0) \cdot F_{ij}(x, y);$$

$$F_{ad} = 1 - 0.14 \cdot (x + y) - 0.0124 \cdot (x + 3y)^{2};$$

$$F_{aa} = (1 - x/3) \cdot (1 - 0.19x + 0.01x^{2});$$

$$F_{dd} = (1 - y/2) \cdot (1 + 0.07y)^{2}.$$

Числові значення коефіцієнтів $N_{ij}(0,0)$ взято згідно [12] (в моль см⁻³):

$$N_{ad} = 97,0; N_{aa} = -65,0; N_{dd} = -30,4.$$

Розраховані значення величини намагніченості насичення для гетероструктур LaGa:ЗІҐ/ҐҐҐ очікуваного складу представлено в табл. 4 та на рис. 2.

Таким чином ми отримуємо цілком прогнозований результат: за рахунок входження домішкових немагнітних іонів Ga³⁺ в структуру плівок значення величини намагніченості насичення є меншими за відповідні теоретично розраховані величини.

Відновлюючи значення кількості Δx домішкових немагнітних іонів Ga³⁺, які є необхідними для узгодження експериментальних та теоретичних даних величини намагніченості насичення, отримуємо наступні величини, які приведені у табл. 4. Беручи до уваги розраховані значення Δx та враховуючи розподіл іонів Ga³⁺ по кристалографічним позиціям гранатової структури

 $x = (0.97 - 0.07X) \cdot X$ y = X - x

на основі моделі ґранатової структури

$$\{Y_{3-(z-\Delta z)}^{3+}La_{z-\Delta z}^{3+}\}[Fe_{2-y}^{3+}Ga_{y}^{3+}](Fe_{3-x}^{3+}Ga_{x}^{3+})O_{12}$$

із рентгеноструктурних даних нами відновлено величину дефіциту Δz іонів La³⁺. Результати розрахунків приведено у табл. 4. Залежності кількості домішкових іонів Ga³⁺ та дефіцит іонів La³⁺ від величини переохолодження розчину-розплаву ΔT можна описати наступними функціями:

$$\Delta x = 0,63 - 0,03 \cdot \Delta T \text{ (Ga}^{3+})$$

$$\Delta z = -0,12 + 0,01 \cdot \Delta T \text{ (La}^{3+})$$

Схожу ситуацію уже спостерігали раніше автори [1-2] досліджуючи технологічні параметри гетероструктур Ga:ЗІГ/ГГГ та LaGa:ЗІГ/ГГГ. В цих роботах було відмічено зменшення коефіцієнту входження до структури плівки іонів Ga³⁺ та його збільшення для іонів La³⁺ при зростанні ступеня переохолодження розчину-розплаву для підвищення швидкості росту. Виміряний нахил спадної лінійної залежності входження іонів Ga³⁺ має дещо менше за отримане нами значення – 0,01 *ат./(форм. од. К)*. Технологічні умови росту представлені у табл. 1 були вибрані із врахуванням результатів отриманих в даній роботі. Однак, як свідчать наші розрахунки певні недоліки ще залишилися, оскільки величини кількості домішкових іонів Ga³⁺ та дефіциту іонів La³⁺ виходять за межі похибки, і чинять суттєвий вплив на кристалічну та магнітну структуру у випадку зразків YIG-13 та YIG-51. Згідно отриманих нами залежностей, величина переохолодження $\Delta T = 25 \ K \ \epsilon$ оптимальною з точки зору відповідності реального складу очікуваному для вирощування гетероструктур LaGa:ЗІІ/ҐІЇ при виборі усіх решту параметрів згідно табл. 1.

2.2. Розподіл деформацій та залишкових напруг в структурі плівки LaGa:ЗІГ.

Використовуючи метод рентгенодифрактометричної тензометрії [6, 7], суть якого полягає в отриманні кривих дифракційного відбивання в умовах симетричної і несиметричної дифракції для зразка YIG-13 нами розраховано компоненти тензора малих деформацій та недіагональні компоненти тензора дисторсії U_{zx} та U_{zy} . Таким чином ми побудували повний тензор малих деформацій в даному зразку:

$$e = \begin{pmatrix} 5.5 & -85.3 & 0.4 \\ 85.3 & -4.5 & -5.8 \\ -0.4 & -5.8 & -64.7 \\ U_{zx} = -1.6 \cdot 10^{-5} \\ U_{yy} = 3.9 \cdot 10^{-5} \end{pmatrix} \times 10^{-5}$$

Його графічна інтерпретація представлена на рис. 3.

Рис. 3. Поля вектора зміщень *U*: зріз площиною XOY та зноска А виділеної області (а); зріз площиною XOZ (б); зріз площиною YOZ (в).

Аналізуючи окремі компоненти отриманого тензору малих деформацій необхідно відмітити наступне:

1. Порядки отриманих експериментально значень $\epsilon_{zz} \approx 10^{-4}$ та ϵ_{xx} , $\epsilon_{yy} \approx 10^{-5}$ збігаються із результатами представленими вище у табл. 3.

2. Велике від'ємне значення компоненти ε_{zz} порівняно із планарними компонентами ε_{xx} , ε_{yy} повністю підтверджує зроблені попередні висновки про ромбоедризацію кристалічної гратки епітаксійної плівки за схемою запропонованою в [4], тобто відбувається значний стиск вздовж напрямку росту кристалу.

3. Отримані числові значення компонент $\varepsilon_{xx} = 5,5 \cdot 10^{-5}$ та $\varepsilon_{yy} = -4,5 \cdot 10^{-5}$ вказують на анізотропність механічних властивостей в площині плівки.

4. На анізотропний характер механічних властивостей в площині плівки також вказують відмінні від нуля деформації сколу: ε_{xz} , ε_{yz} та ε_{xy} . Даний факт, очевидно, зумовлений післяростовою обробкою плівки, а саме способом її порізки (рис. 1).

5. Основну роль серед деформацій сколу відіграє компонента $\varepsilon_{xy} = -85, 3 \cdot 10^{-5}$, яка і приводить до формування у площині плівки поля вектора зміщень *U* представленого на рис. 3.а.

На практиці для вирішення та розв'язку окремих задач теорії пружності більш зручним та важливим при застосуванні є тензор залишкових напруг. Використовуючи узагальнений закон Гука для анізотропних середовищ [16]:

$$s_{ij} = C_{ijkl} \cdot e_{kl}$$

тут σ_{ij} – шуканий нами тензор залишкових напруг, C_{ijkl} – тензор четвертого рангу, який називається тензором коефіцієнтів пружності, ε_{kl} – розрахований нами тензор малих деформацій. Ненульові коефіцієнти пружності для заданої структури приведено у [17]. Розпишемо тоді узагальнений закон Гука для окремих компонент із врахуванням ненульових коефіцієнтів пружності:

$$s_{xx} = C_{11} \cdot e_{xx} + C_{12} \cdot (e_{yy} + e_{zz})$$

$$s_{yy} = C_{11} \cdot e_{yy} + C_{12} \cdot (e_{xx} + e_{zz})$$

$$s_{zz} = C_{11} \cdot e_{zz} + C_{12} \cdot (e_{xx} + e_{yy})$$

$$s_{xy} = C_{44} \cdot e_{xy}$$

$$s_{xz} = C_{44} \cdot e_{xz}$$

$$s_{yz} = C_{44} \cdot e_{yz}$$

Підставляючи значення коефіцієнтів C_{11} , C_{12} та C_{44} отримуємо шуканий тензор залишкових напруг в епітаксійній плівці YIG-13 (форма зразка зображена на рис. 1.

$$\boldsymbol{s} = \begin{pmatrix} -65 & -64 & 0,3 \\ 64 & -80 & -4 \\ -0,3 & 4 & -173 \end{pmatrix} \boldsymbol{M} \boldsymbol{\Pi} \boldsymbol{a}$$

Висновки

Таким чином, результати досліджень проведених у даному підрозділі формують цілісну картину деформацій набутих плівкою в процесі росту та післяростової обробки. Виявлено невідповідність очікуваного та реального складу для епітаксійних гетероструктур LaGa:ЗІГ/ГГГ, яка пов'язана із додатковим входженням в структуру вирощуваних плівок підчас процесу РФЕ катіонів із малим іонним радіусом, зокрема іонів Ga³⁺, та зменшенням коефіцієнта входження великих ioнiв La³⁺. Отримано вигляд функціональних залежностей коефіцієнтів входження для даних катіонів від температури переохолодження та встановлено оптимальну з точки зору відповідності реального складу очікуваному величину переохолодження для вирощування гетероструктур LaGa:ЗІГ/ГГГ, яка становить $\Delta T = 25 K$. Для зразка номінального складу $Y_{2.907}La_{0.093}Fe_{4.9}Ga_{0.1}O_{12}$ побудовано повний тензор малих деформацій та відновлено тензор залишкових напруг, яких набуває епітаксійна плівка процесі росту та післяростової обробки. Встановлено вплив процесу порізки на формування результуючої картини розподілу деформацій та залишкових напруг в структурі плівки, що й приводить до значної анізотропії планарних механічних характеристик. Врахування впливу даного фактору є надзвичайно важливим при подальшій обробці та застосуванні ЕФГП.

Мокляк В.В. – кандидат фізико-математичних наук, старший науковий співробітник лабораторії фізики магнітних плівок Інституту металофізики ім. Г.В. Курдюмова НАН України

- [1] C.I. Jushhuk, P.S. Kostjuk, I.E. Lopatinskij, ZhTF 68(9), 46 (1998).
- [2] C.I. Jushhuk, P.S. Kostjuk, Pis'ma v ZhTF 27(3), 49 (2001).
- [3] J. Kohout, H. Stepankova, J. Englich, P. Novak, M. Kucera, K. Nitsch, H. Gronckel, Journal of Magn. and Magn. Mater. 196/197, 415 (1999).
- [4] V.V. Mokljak, H Mizhnarodna kon¬fe¬ren¬cija fiziki i tehnologiï tonkih plivok (Ivano-Frankivs'k, 2005), s. 203.
- [5] B. Strocka, P. Holst, W. Tolksdorf, Philips J. Res. 33(3/4), 166 (1978).
- [6] Yu.P. Khapachev, A.A. Dyshekov, D.S. Kiselev, Phys. Stat. Sol. 126b(37), 37 (1984).
- [7] Ju.P. Hapachev, F.N. Chuhovskij, Kristallografija 34(3), 776 (1989).
- [8] Ju.B. Bolhovitjanov, O.P. Pcheljakov, S.I. Chikichev UFN, 171(7), 689 (2001).
- [9] A.M. Prohorov, G.A. Smolenskij, A.I. Ageev, UFN 143(1), 33 (1984).
- [10] O.G. Rutkin, A.N. Ageev, E.L. Duhovskaja, Ju.G.Saksonov, E.S.Sher, ZhTF 52(12), 2411(1982).
- [11] S.B. Ubizs'kij, G.V. Savic'kij, V.I. Bondar, I.M. Sivorotka, Ne¬ruj¬niv¬nij kontrol' kons¬truk-cijnih ta funkcional'nih materialiv. Zbirnik naukovih prac' 229 (2002).
- [12] G.F. Dione, J. Appl. Phys. 41(12), 4874 (1970).
- [13] G.F. Dione, J. Appl. Phys. 42, 2142 (1971).

[14] G.F. Dione, J. Appl. Phys. 47(9), 4220 (1976).

[15] P. Roschmann, P. Hansen, J. Appl. Phys. 52(10), 6257 (1981).

[16] Ju.I. Sirotin, M.P. Shaskol'skaja, Osnovy kristallofiziki (Nauka, Moskva, 1979).

Ju.A. Burenkov, S.P. Nikanorov, FTT 44(2), 307 (2002).

V.V. Moklyak

Features Crystal Structure LaGa - Substituted Epitaxial Films Yttrium Iron Garnet. Determination of Defects

G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, UA-03680 Kyiv-142, Ukraine, <u>mvvmcv@mail.ru</u>

The results of studies conducted in this paper form a complete picture of strains acquired during film growth and further processing. With comprehensive thermodynamic and crystal chemistry analysis evaluated the presence of impurities in the technological structures LaGa-YIG/GGG, and studied their effects on structural perfection of films and shows the results of data recovery X-ray analysis of full tensor strain and non-diagonal elements of the tensor distortion arising in the epitaxial heterostructure in the process of growing and with further technological processing. The presence of a large planar anisotropy of mechanical characteristics of epitaxial films that arise after cutting.

Keywords: yttrium-iron garnet, epitaxial ferrite-garnet film, liquid phase epitaxy, tensor strain, misfit dislocations.