УДК 621.891+621.89+621.567; 539.62

ISSN 1729-4428

Г.О. Сіренко, Л.М. Солтис

Трибоповерхневі властивості полімерного композиту під час тертя та зношування по анізотропній шорсткій поверхні сталі 45

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, м. Івано-Франківськ, 76025, Україна, e-mail: <u>orijant@gmail.com</u>

Досліджено закономірності зміни анізотропної шорсткості поверхонь сталі 45 під час тертя та зношування у парі з полімерним композитом. Виявлено, що топографія спряженої з полімерним композитом металевої поверхні є домінуючим чинником у визначенні величини зносу карбопластика як на початку, так і в процесі тертя та зношування, коли шорсткість металевої поверхні твориться самим композитом. Встановлено, що інваріантні комбінації моментів нульового порядку у більшій мірі лінійно впливають на знос полімерного зразка, ніж інваріантні комбінації моментів другого порядку, при цьому знос нелінійно залежить від інваріантних комбінацій моментів четвертого порядку.

Ключові слова: шорсткість, інтенсивність зношування, анізотропна поверхня, тертя, композиційний полімерний матеріал, моменти спектральної щільності, мінорантний ряд.

Стаття поступила до редакції 23.07.2014; прийнята до друку 15.09.2014.

Вступ

У роботах [1-41] проаналізовані параметри математичного опису шорстких поверхонь та методи їх досліджень. Так, у роботах [42-59] досліджуються ізотропні шорсткі поверхні твердих тіл, при цьому математичний опис ізотропних та анізотропних шорстких поверхонь проведений на основі теорії випадкового поля [60, 61]. Зокрема, у цих роботах досліджується: щільність ймовірностей розподілу висот вершин [43, 53, 57], розподіл висот вершин [44], середня виступів шорсткої поверхні [50], розподіл середніх кривин у вершинах нерівностей [44, 48, 49, 56], градієнт поверхні [44, 46], повна кривина [45, 49], головні кривини [45] та відношення головних кривин [45] у вершинах мікронерівностей, дискутується питання означення ізотропності нанота мікрошорсткої поверхні [47], досліджується щільність плям контакту шорсткої поверхні з рівною [42, 50] та явище злиття плям контакту під час навантаження сильно анізотропних шорстких поверхонь [42].

Теорія [62] застосовувалась для аналізу ізотропної поверхні при пружному контакті [63, 64], при пластичній течії [65, 66] і при адгезії [67]. У [68] розглянуті деякі наближені методи отримання характеристик анізотропної поверхні, а в [69, 70] – розрахунки з використанням моделі ізотропних поверхонь. У [71] виявлені закономірності зміни параметрів шорсткості ізотропної поверхні сталі 45 під час тертя та зношування у парі з полімерним композитом, а також проаналізовані результати та встановлені мінорантні ряди впливу моментів спектральної щільності поверхні металу на інтенсивність зношування полімерного композиту на основі вуглецевих волокон та полімерної матриці – ароматичного поліаміду або політетрафторетилену.

I. Теоретична частина

1.1. Автокореляційна функція анізотропної шорсткої поверхні. Нехай анізотропна шорстка поверхня описана рівнянням z = z(x, y), де z - z(x, y)випадкова функція для двох змінних х і у (випадкове поле), а х, у - декартові координати на середній площині висот шорсткої поверхні, але разом з тим статистичні характеристики поверхні залежать від $\theta = arctg(k_v/k_x)$ та інваріантні напрямків ло переміщення початку координат на поверхні (однорідна поверхня). У якості поверхні, від якої здійснюється відлік висот, є площина, яка відповідає середній висоті шорсткої поверхні.

Випадкова функція z, яка описує таку шорстку статистично однорідну анізотропну поверхню, має автокореляційну функцію R(x, y) і допускає її спектральний розклад Фур'є $\Phi(k_x, k_y)$ на гармонічні компоненти, де k_x , k_y – компоненти хвильового

вектора $\overline{\mathbf{k}}$, модуль якого дорівнює $|\overline{\mathbf{k}}| = 2\pi/\lambda$ з довжиною хвилі λ .

Тоді автокореляційна функція за означенням [62] дорівнює:

$$R(x, y) = \lim_{\substack{L_1 \to \infty \\ L_2 \to \infty}} \frac{1}{4L_1 L_2} \int_{-L_1}^{L_1} \int_{-L_2}^{L_2} z(x_1, y_1) z(x_1 + \Delta x, y_1 + \Delta y) dx_1 dy_1.$$
(1)

1.2. Спектральною щільністю (СЩ) анізотропної шорсткої поверхні є перетворення Фур'є від функції R (x, y) [62]:

$$\Phi(K_x, K_y) = \frac{1}{4p^2} \int_{-\infty}^{\infty} R(x, y) \exp\left[-i(xK_x + yK_y)\right] dxdy, (2)$$

а зворотне перетворення Ф(k_x,k_y) [62]:

$$R(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(K_x, K_y) \exp[i(xK_x + yK_y)] dK_x dK_y.$$
(3)

3 виразу (1) видно, що R (0, 0) = σ^2 , де σ^2 – дисперсія, а σ – середнє квадратичне (стандартне) відхилення висоти нерівностей [62, 72]. Тому з (3) витікає [62, 72]:

$$\mathbf{S}^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(k_{x}, k_{y}) dk_{x} dk_{y}.$$
(4)

Вираз (4) відбиває те, що функція $\Phi(k_x, k_y)$ визначає той внесок у величину дисперсії σ^2 , який додає різні спектральні компоненти, що відповідають хвилям з хвильовим числом k і довжинами [105]: $\lambda=2\pi/|\vec{k}|$ та напрямками [62]: $\theta=\arctan(k_x/k_y)$. Для ізотропних поверхонь функція Φ залежить тільки від змінної $k \equiv |\vec{k}|$. Моменти спектральної щільності (СЩ) анізотропної шорсткої поверхні визначаються так [62, 72]:

$$m_{pq} = \operatorname{Re} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(k_x, k_y) k_x^p k_y^q dk_x dk_y,$$
(5)

де Re – дійсна частина числа. Згідно (5) маємо: $m_{00} = \sigma^2$.

1.3. Щільність ймовірностей розподілу висот вершин випадкової анізотропної шорсткої поверхні. Залежність щільності ймовірностей розподілу висот вершин анізотропної поверхні [44, 57] від $e'_1 = z/m_{00} = z/s$ – безрозмірної (нормованої) висоти:

$$p_{sum}(e'_{1}) = \frac{1}{4} D^{-1} p^{-3} \Delta^{-1/2} m_{00}^{1/2} m_{22}^{5/2} \times \\ \times \exp\left[-\frac{\Delta_{2} m_{00}}{2\Delta_{12}} (e'_{1})^{2}\right]_{-\infty}^{0} \exp(A_{1}t^{2} + A_{7}e'_{1}t)dt \times \\ \times \int_{0}^{-t} (t^{2} - r^{2})r dr \int_{0}^{2p} \exp[A_{4}r^{2}\cos^{2}j + (6) + A_{5}r^{2}\cos j \sin j + A_{6}r^{2}\sin^{2}j + (6) + (6) + (6)r^{2} \cos j \sin j + (6)r^{2} \sin^{2}j + (6)r^{$$

+ $(A_2t + A_8e'_1)r\cos j + (A_3t + A_9e'_1)r\sin j]dj$, _{Ae} $A_1 = -\frac{m_{22}(\Delta_6 + 2\Delta_8 + \Delta_{11})}{2\Delta_{12}}$;

$$\begin{split} A_2 &= -\frac{m_{22}(\Delta_6 - \Delta_{11})}{\Delta_{12}}; \quad A_3 = \frac{m_{22}(\Delta_7 + \Delta_{10})}{\Delta_{12}}; \\ A_4 &= -\frac{m_{22}(\Delta_6 - 2\Delta_8 + \Delta_{11})}{2\Delta_{12}}; \\ A_5 &= \frac{m_{22}(\Delta_7 - \Delta_{10})}{\Delta_{12}}; \quad A_6 = -\frac{\Delta_9 m_{22}}{2\Delta_{12}}; \\ A_7 &= \frac{(\Delta_3 + \Delta_5)(m_{00}m_{22})^{1/2}}{\Delta_{12}}; \\ A_8 &= \frac{(\Delta_3 - \Delta_5)(m_{00}m_{22})^{1/2}}{\Delta_{12}}; \quad A_9 = -\frac{\Delta_4(m_{00}m_{22})^{1/2}}{\Delta_{12}}; \end{split}$$

 Δ , Δ ₁, ..., Δ ₁₂, D, t, ρ , ϕ .

Розглядаючи ізотропну шорстку поверхню як поодинокий випадок анізотропної шорсткої поверхні, коли АКФ і моменти СЩ не залежать від напрямку, на підставі (5), будемо мати співвідношення:

$$m_{00} = m_0; m_{20} = m_{02} = m_2;$$

 $m_{11} = m_{13} = m_{31} = 0; 3m_{22} = m_{40} = m_{04} = m_4.$ (7)

За [62] для опису ізотропних шорстких поверхонь необхідно використати три спектральні моменти (m₀, m₂ і m₄) і один параметр широкосмугастості спектру $\alpha = (m_0 m_4)/m_2^2$, який не залежить від орієнтації системи координат на поверхні та змінюється в межах: $1,5 \le \alpha < +\infty$.

У загальному випадку щільність ймовірностей висот вершин ізотропної поверхні залежить від двох параметрів: α і e'_1 , а в граничних випадках (при $\alpha \rightarrow 1,5$ або $\alpha \rightarrow +\infty$) – від одного параметра e'_1 .

Для $\alpha \rightarrow \infty$ спостерігається гавсовський розподіл щільності ймовірностей висот вершин за $e'_1 =$ -3,5...+3,5, при цьому $0 \le p(e'_1) \le 0,4$, а при $\alpha = 1,5$ маємо релеєвський розподіл у межах $0 \le e'_1 \le +3,5$, при цьому $0 \le p(e'_1) \le 0,627$.

Щільність ймовірностей висот $\varepsilon_1 = z$ поверхні [44, 57]:

$$p(\boldsymbol{e}_1) = \sqrt{(2\boldsymbol{p}\boldsymbol{s}^2)} \exp\left(-\frac{\boldsymbol{e}_1^2}{2\boldsymbol{s}^2}\right). \tag{8}$$

1.4. Функція розподілу висот вершин анізотропної шорсткої поверхні [62], яка визначає частку тих вершин, у яких величини висот не перевищують значення e'_1 :

$$f(e'_{1}) = \int_{-\infty}^{e_{1}} p(e'_{1}) de'_{1}, \qquad (9)$$

де $0 \le f(e'_1) \le 1$ за $0 \le e'_1 < 3,5$ та $1,5 \le \alpha < \infty$.

1.5. Середня кривина анізотропної шорсткої поверхні у вершині виступів висотою e'_1 [44, 56]:

$$E\overline{K}_{sum}(\mathbf{e}_{1}') = -m_{22}^{1/2} \left\{ \left(\frac{m_{00}^{1/2} m_{22}^{5/2}}{4Dp^{3} \Delta^{1/2}} \exp\left[-\frac{\Delta_{2} m_{00}}{2\Delta_{12}} (\mathbf{e}_{1}')^{2} \right] \right\}_{-\infty}^{0} t \exp(A_{1}t^{2} + A_{7}\mathbf{e}_{1}'t) dt \times \right. \\ \left. \times \int_{0}^{-t} (t^{2} - \mathbf{r}^{2}) \mathbf{r} \, d\mathbf{r} \int_{0}^{2p} \exp\left[A_{4}\mathbf{r}^{2} \cos^{2} \mathbf{j} + A_{5}\mathbf{r}^{2} \cos \mathbf{j} \cdot \sin \mathbf{j} + A_{6}\mathbf{r}^{2} \sin^{2} \mathbf{j} + \right. \\ \left. + (A_{2}t + A_{8}\mathbf{e}_{1}') \mathbf{r} \cos \mathbf{j} + (A_{3}t + A_{9}\mathbf{e}_{1}') \mathbf{r} \sin \mathbf{j} \right] d\mathbf{j} \right) \right/ \left(\frac{1}{4} D^{-1} \mathbf{p}^{-3} \Delta^{-1/2} m_{00}^{1/2} m_{22}^{5/2} \times \right.$$

$$\left. \times \exp\left[-\frac{\Delta_{2} m_{00}}{2\Delta_{12}} (\mathbf{e}_{1}')^{2} \right] \right]_{-\infty}^{0} \exp(A_{1}t^{2} + A_{7}\mathbf{e}_{1}'t) dt \int_{0}^{-t} (t^{2} - \mathbf{r}^{2}) \mathbf{r} d\mathbf{r} \int_{0}^{2p} \exp\left[A_{4}\mathbf{r}^{2} \cos^{2} \mathbf{j} + \right. \\ \left. + A_{5}\mathbf{r}^{2} \cos \mathbf{j} \, \sin \mathbf{j} + A_{6}\mathbf{r}^{2} \sin^{2} \mathbf{j} + (A_{2}t + A_{8}\mathbf{e}_{1}') \mathbf{r} \cos \mathbf{j} + (A_{3}t + A_{9}\mathbf{e}_{1}') \mathbf{r} \sin \mathbf{j} \right] d\mathbf{j} \right) \right\},$$

$$(10)$$

1.6. Градієнт випадкової анізотропної шорсткої поверхні визначається за [44, 46, 62, 73]:

$$Eq_{sum} = \sqrt[4]{\frac{4\Delta_1}{p^2}} \exp\left(\frac{h_1}{2}\right) E_1\left(\sqrt{1 - \exp(-2h_1)}\right), \quad (11)$$

де зворотній гіперболічний косинус [74]:

$$\boldsymbol{h}_{1} = Arch \frac{M_{2}}{2\sqrt{\Delta_{1}}}, \qquad (12)$$

де $\frac{M_2}{2\sqrt{\Delta_1}} \ge 1$; E₁(æ) – повний еліптичний інтеграл

1.7. За [62] для опису ізотропних шорстких поверхонь достатньо використати три спектральні моменти (\mathbf{m}_0 , \mathbf{m}_2 і \mathbf{m}_4) і один параметр широкосмугастості спектра $\alpha = (m_0 m_4)/m_2^2$, який не залежить від орієнтації системи координат на поверхні. Лонге-Гігтінс [73] показав, що для опису анізотропної поверхні необхідно використати 9 спектральних моментів: m_{00} , m_{20} , m_{11} , m_{13} , m_{31} , m_{22} , m_{40} , m_{04} , але при $i+j \le 4$ існують лише 7 їх інваріантних комбінацій, які не залежать від орієнтації системи координат:

Лежандра 2-го роду.

• нульового порядку: $M_0 = m_{00};$ (13)

$$\int M_2 = (m_{02} + m_{20}); \tag{14}$$

• другого порядку $\begin{cases} 2 & 0.2 \\ M_3 = (m_{20}m_{02} - m_{11}^2); \end{cases}$ (15)

$$M_4 = (m_{40} + 2m_{22} + m_{04}); \tag{16}$$

$$M_{5} = \left(m_{40}m_{04} - 4m_{13}m_{31} + 3m_{22}^{2}\right);$$
(17)

• четвертого порядку
$$\begin{cases} M_6 = (m_{40} + m_{22})(m_{22} + m_{04}) - (m_{31} + m_{13})^2; \\ M_6 = m_6(m_6 - m_{22})(m_{22} + m_{04}) - (m_{31} + m_{13})^2; \end{cases}$$
(18)

$$\left[M_{7} = m_{40}\left(m_{22}m_{04} - m_{13}^{2}\right) - m_{31}\left(m_{31}m_{04} - m_{13}m_{22}\right) + m_{22}\left(m_{31}m_{13} - m_{22}^{2}\right).$$
 (19)

1.8. Введемо в науковий обіг 8 параметрів широкосмугастості спектру анізотропної поверхні:

$$a_{1} = \frac{M_{0}M_{4}}{M_{2}^{2}} = \frac{m_{00}(m_{40} + 2m_{22} + m_{04})}{(m_{02} + m_{20})^{2}};$$
(20)

$$a_{2} = \frac{M_{0}M_{5}}{M_{2}^{2}} = \frac{m_{00}(m_{40}m_{04} - 4m_{13}m_{31} + 3m_{22}^{2})}{(m_{02} + m_{20})^{2}};$$
(21)

$$a_{3} = \frac{M_{0}M_{6}}{M_{2}^{2}} = \frac{m_{00}\left[(m_{40} + m_{22})(m_{22} + m_{04}) - (m_{31} + m_{13})^{2}\right]}{(m_{02} + m_{20})^{2}};$$
(22)

$$\boldsymbol{a}_{4} = \frac{M_{0}M_{7}}{M_{2}^{2}} = \frac{m_{00} \left[m_{40} \left(m_{22}m_{04} - m_{13}^{2} \right) - m_{31} \left(m_{31}m_{04} - m_{13}m_{22} \right) + m_{22} \left(m_{31}m_{13} - m_{22}^{2} \right) \right]}{\left(m_{02} + m_{20} \right)^{2}};$$
(23)

Трибоповерхневі властивості полімерного композиту...

$$a_{5} = \frac{M_{0}M_{4}}{M_{3}^{2}} = \frac{m_{00}(m_{40} + 2m_{22} + m_{04})}{\left(m_{20}m_{02} - m_{11}^{2}\right)^{2}};$$
(24)

$$\boldsymbol{a}_{6} = \frac{M_{0}M_{5}}{M_{3}^{2}} = \frac{m_{00}\left(m_{40}m_{04} - 4m_{13}m_{31} + 3m_{22}^{2}\right)}{\left(m_{20}m_{02} - m_{11}^{2}\right)^{2}};$$
(25)

$$\boldsymbol{a}_{7} = \frac{M_{0}M_{6}}{M_{3}^{2}} = \frac{m_{00}\left[\left(m_{40} + m_{22}\right)\left(m_{22} + m_{04}\right) - \left(m_{31} + m_{13}\right)^{2}\right]}{\left(m_{20}m_{02} - m_{11}^{2}\right)^{2}};$$
(26)

$$a_{8} = \frac{M_{0}M_{7}}{M_{3}^{2}} = \frac{m_{00} \left[m_{40} \left(m_{22}m_{04} - m_{13}^{2} \right) - m_{31} \left(m_{31}m_{04} - m_{13}m_{22} \right) + m_{22} \left(m_{31}m_{13} - m_{22}^{2} \right) \right]}{\left(m_{20}m_{02} - m_{11}^{2} \right)^{2}}.$$
(27)

1.9. Введемо у науковий обіг узагальнений параметр широкосмугастості (α_k , де $k \equiv Q$, q, a, g, h – вид середньої) СЩ анізотропної поверхні; побудованого на частинних параметрах широкосмугастості спектру, за інваріантами спектральних моментів:

• середню кубічну
$$\alpha_Q = \sqrt[3]{\left(\sum_{i=1}^{n=8} \alpha_i^3\right)/n}$$
; (28)

• середню квадратичну
$$\alpha_{q} = \sqrt{\left(\sum_{i=1}^{n=8} \alpha_{i}^{2}\right)}/n$$
; (29)

• середню арифметичну
$$\alpha_a = \left(\sum_{i=1}^{n=8} \alpha_i\right) / n$$
; (30)

• середню геометричну
$$\alpha_{g} = \sqrt[n]{\sum_{i=1}^{n-1} \alpha_{i}}$$
, (31)

де D – позначення добутку;

• середню гармонійну

$$\alpha_{\rm h} = \frac{1}{\left[\sum_{i=1}^{n=8} \left(\frac{1}{\alpha_i}\right)\right]/n} = n \cdot \left[\sum_{i=1}^{n=8} \left(\frac{1}{a_i}\right)\right]^{-1}, \quad (32)$$

між якими існує співвідношення мінорантного ряду:

$$\boldsymbol{a}_{Q} > \boldsymbol{a}_{q} > \boldsymbol{a}_{a} > \boldsymbol{a}_{g} > \boldsymbol{a}_{h}. \tag{33}$$

1.10. Також введемо у науковий обіг узагальнений параметр широкосмугастості СШ анізотропної поверхні як узагальнену функцію бажаності d, побудованого на частинних функціях бажаності: $0 \le d_i \le 1$, де $d_i = \exp[-\exp(-\alpha')]$; $\alpha' = b_0 + b_1\alpha_i$; $\alpha' = b_0 + b_1\alpha_i + b_{11}\alpha_i^2$; $\alpha' = b_0 \ln \alpha_i^{b_1}$;...; $\alpha = \sqrt[n]{\sum_{i=1}^n d_i}$.

II. Експериментальна частина

2.1. Матеріали досліджень.

Досліджували анізотропну поверхню контртіла із сталі 45 (HB 4,50 \pm 0,02 ГПа) та композиту на основі ПТФЕ + 20% карбонізованого волокна УТМ-8.

2.2. Методи випробування.

1. Тертя та зношування даних матеріалів без

мащення вивчали на трибометрі XTI-72М за схемою [I-1] [75], де I-вид контакту, 1 – форма зразка: торець пальчика діаметром 10 ± 0,05 мм і висотою 15±0,1 мм ковзав по площині металевого контртіла; контртіло було виконано порожнистим діаметром 60 \pm 0,15 мм, висотою 35 \pm 0,2 мм, товщиною робочої частини поверхні тертя 5 ± 0,2 мм або у вигляді диску діаметром $60 \pm 0,1$ мм і висотою (10 -15) ± 0,1 мм, яке розміщали у відповідне гніздо порожнинного тіла. Через порожнину контртіла проходила холодна вода, або розміщувався термонагрівач, завдяки яким підтримувався заданий тепловий режим поверхні тертя вуглецевої сталі 45, термообробленої до HB 4,5 ± 0,2 ГПа, з вихідним середнім арифметичним відхиленням профілю поверхні [71]: Ra₀ = 0,085 мкм (дослід № 70); Ra₀ = 0,22 мкм (дослід № 72); Ra₀ = 0,49 мкм (дослід № 73); Ra₀ = 0,85 мкм (дослід № 74); Ra₀ = 1,42 мкм (дослід № 75); питоме навантаження на 3 зразки складало р = 3 МПа (нормальне навантаження на 1 зразок $N_i = 235,62H$); швидкість ковзання v = 1,1 м/c; температура поверхні сталі T = 373 ± 1 К, яка була визначена термопарою XK на відстані 1 ± 0.05 мм від поверхні тертя контртіла, а величини (в mV) записувались на стрічку потенціометра КСП-4, шлях тертя складав S ≤ 1000 - 3200 км (сумарний час тертя $\tau = 253 - 808$ год.) із заміром величини зносу через 50 -200 км (т_і = 12,6-50,4 год.).

2. Полімерні зразки послідовно припрацьовували на шліфувальній шкурці відповідної до завдання дослідження зернистості, що знаходилися на масивному плоскому металевому тілі. Металеве контртіло шліфували, а потім оброблювали на шліфувальній шкурці відповідної до завдання дослідження зернистості у випадкових напрямках (для того, щоб отримати поверхню, яка була б близькою до анізотропної поверхні). Далі полімерні зразки припрацьовували на металевому контртілі при робочих трибопараметрах випробувань ло досягнення приблизно 100 % дзеркальної поверхні. Після припрацювання полімерних зразків металеве контртіло знову припрацьовували на шліфувальній шкурці відповідної до завдання дослідження зернистості, що знаходилися на масивному плоскому металевому тілі.

3. Профілограми мікрошорсткості поверхонь

знімали за допомогою профілометра-профілографа ВЭИ «Калибр» моделі «201» та моделі «252». Для одного напрямку знімали 50-60 базових довжин профілограм для металевого контртіла і 10-15 базових довжин профілограм для полімерного зразка. Для ізотропної поверхні профілограму знімали під кутом ~45⁰ до напрямку ковзання. Ділянки зйомки поверхні були рівнорозподілені за слідом тертя. Статистичні характеристики різних ділянок поверхні були однаковими в статистичному відношенні.

Профілограми оброблялися за методом МНК: знаходили середньоарифметичне відхилення профілю поверхні Ra, щільність нулів D_0 і щільність екстремумів D_{extr} . Виміряна Ra і розрахункова за профілограмами D_0 (для моделі «252» D_0 виміряна) були статистично рівні.

Великий об'єм виборки і рівномірний розподіл її по поверхні контртіла або зразка забезпечили рівень вмісту довгохвильових компонентів спектру, і, таким чином, показність моментів спектральної щільності. Границя дрібномасштабних мікронерівностей у ділянці малих довжин хвиль спектру була обмежена величиною, яка не перебільшувала у 2-3 рази похибку вимірювань. Параметр широкосмугастості спектру а був більше 1,8, тобто тієї величини, яка характерна для «білого шуму».

За результатами обробки профілограм визначали моменти нульового m_{00} , другого m_{02} , m_{20} , m_{11} та четвертого m_{13} , m_{31} , m_{22} , m_{04} , m_{40} порядків спектральної щільності (СЩ) розподілу висот вершин нерівностей, кривин у вершинах нерівностей та ґрадієнтів шорсткої поверхні.

III. Результати та обговорення

3.1. Коефіцієнти кореляцій (R_i) між питомими інтенсивностями об'ємного зношування композиту та інваріантами моментів спектральної щільності (СЩ) нульового порядку M_1 (мкм²), пов'язаного з висотами вершин мікро- та нанонерівностей, інваріантами моментів СЩ другого порядку M_2 і M_3 (безрозмірні величини), які пов'язані з градієнтом поверхні та інваріантами моментів СЩ четвертого порядку M_4 (мкм⁻²), M_5 і M_6 (мкм⁻⁴), M_7 (мкм⁻⁶), які пов'язані з кривиною у вершині мікро- та нанонерівностей вихідної поверхні або поверхні, що утворилася в процесі тертя та зношування в кінці шляху 300 км $M_1', M_2', M_3', M_4', M_5', M_6', M_7'$, наведені у табл. 1.

За принципом аналогії однакових за природою та механізмом явищ із означеннями інваріантних комбінацій M_i 9-ти спектральних моментів, які, за Лонге-Гітгінсом [73], описують анізотропну випадкову поверхню, нульового порядку — m_{00} ; другого порядку — m_{20} , m_{02} , m_{11} ; четвертого порядку — m_{13} , m_{31} , m_{22} , m_{40} , m_{04} , та введеними нами [58] у науковий обіг 8-ми параметрів широкосмугастості спектральної щільності розподілу нерівностей анізотропної поверхні α_i , розрахуємо частинні інваріантні комбінації коефіцієнтів кореляцій (R_i)

лінійного зв'язку питомої інтенсивності об'ємного зношування (I_j) з інваріантними комбінаціями (α_i) спектральних моментів (M_i) .

Результати розрахунків R_i занесені в табл. 1. Введення у науковий обіг узагальненого параметру широкосмугастості (α_k , де $k \equiv Q, q, a, g, h$ – вид середньої) СЩ анізотропної поверхні дозволило, відповідно, за принципом аналогії (28)-(32), розрахувати узагальнений коефіцієнт кореляцій лінійного зв'язку \overline{R}_k між питомою інтенсивністю об'ємного зношування I_j та α_k . Результати розрахунків \overline{R}_Q , \overline{R}_q , \overline{R}_a , \overline{R}_g , \overline{R}_h занесені у табл. 1.

3.2. Статистичну оцінку значущості коефіцієнтів кореляцій та їх інваріантних комбінацій, включаючи й узагальненого коефіцієнта кореляцій, лінійних зв'язків $I_j = f(M_i)$, $I_j = f(\alpha_i)$, $I_j = f(\alpha_k)$, дано:

• за критичним коефіцієнтом кореляцій $r_{\kappa p}\{q = 1-(\alpha/2); f = n-2\}$ [76, 77], де $\alpha = 0,05$ – рівень значущості, f – число вільностей, a n=8 – кількість варіантів, тоді за [76] $r_{\kappa p}\{q = 0,975; f = 6\} = 0,7067$, при цьому ступінь лінійності лінійного зв'язку визначали за співвідношеннями:

$$\xi_{1}(\mathbf{r}) = \frac{\left|\mathbf{r}_{p}\right|}{\mathbf{r}_{\kappa p}}; \ \xi_{1}(\mathbf{R}) = \frac{\left|\mathbf{R}_{p}\right|}{\mathbf{r}_{\kappa p}}; \ \xi_{1}(\overline{\mathbf{R}}) = \frac{\left|\overline{\mathbf{R}}_{p}\right|}{\mathbf{r}_{\kappa p}}, \qquad (34)$$

де r_p, R_p, R_p – розрахункові значення коефіцієнтів кореляцій, частинних інваріантних комбінацій коефіцієнтів кореляції та середнього значення узагальненого коефіцієнта кореляцій, а ступінь нелінійності – за співвідношеннями:

$$\xi_{2}(\mathbf{r}) = \frac{\mathbf{r}_{\kappa p}}{\left|\mathbf{r}_{p}\right|}; \ \xi_{2}(\mathbf{R}) = \frac{\mathbf{r}_{\kappa p}}{\left|\mathbf{R}_{p}\right|}; \ \xi_{2}(\overline{\mathbf{R}}) = \frac{\mathbf{r}_{\kappa p}}{\left|\overline{\mathbf{R}}_{p}\right|}; \ (35)$$

• за теоретичним (табличним) значенням критерію Стьюдента [76] $t_T{q = 1-(\alpha/2); f = n - 2} = t_T{q = 0,975; f = 6} = 2,447$ (для $\alpha = 0,05$), порівнюючи його з розрахованою t-статистикою t_p [77]:

$$\left| \mathbf{t}_{p}^{\prime} \right| = \frac{\mathbf{r}_{p}}{\sqrt{1 - \mathbf{r}_{p}^{2}}} \sqrt{n - 2}; \ \left| \mathbf{t}_{p}^{\prime \prime} \right| = \frac{\mathbf{R}_{p}}{\sqrt{1 - \mathbf{R}_{p}^{2}}} \sqrt{n - 2}; \left| \mathbf{t}_{p}^{\prime \prime \prime} \right| = \frac{\overline{\mathbf{R}}_{p}}{\sqrt{1 - \overline{\mathbf{R}}_{p}^{2}}} \sqrt{n - 2},$$
(36)

визначаючи ступінь лінійності лінійного зв'язку за співвідношеннями:

$$\xi_{1}(t') = \frac{\left|t'_{p}\right|}{t_{T}}; \ \xi_{1}(t'') = \frac{\left|t''_{p}\right|}{t_{T}}; \ \xi_{1}(t''') = \frac{\left|t'''_{p}\right|}{t_{T}}, \ (37)$$

а ступінь нелінійності – за співвідношеннями:

$$\xi_{2}(\mathbf{t}') = \frac{\mathbf{t}_{T}}{\left|\mathbf{t}'_{p}\right|}; \ \xi_{2}(\mathbf{t}'') = \frac{\mathbf{t}_{T}}{\left|\mathbf{t}''_{p}\right|}; \ \xi_{2}(\mathbf{t}''') = \frac{\mathbf{t}_{T}}{\left|\mathbf{t}''_{p}\right|}; \ (38)$$

Таблиця 1

Коефіцієнти кореляцій між питомими інтенсивностями об'ємного зношування композиту та інваріантними комбінаціями спектральних моментів, частинного та узагальненого параметрів широкосмугастості спектру анізотропної шорсткої поверхні металевого контртіла

Domining	Шлях тертя								
Беличина	050км (I ₁)	200300км (I ₄)	300400км (I ₅)	300-400км (І ₅ ')					
Інваріантні комбінації спектральних моментів (M _i)	Коефіцієнти кореляцій зв'язків інтенсивностей зношування (І _i) та інваріантних комбінацій спектральних моментів М _і								
M ₁	0,943	0,943 0,708 0,252							
M_2	0,881	0,825	0,667	0,912					
$\tilde{M_3}$	0,834	0,785	0,622	0,893					
M_4	0,612	0,584	0,914	0,608					
M ₅	0,675	0,621	0,797	0,637					
M_6	0,510	0,531	0,856	0,549					
M_7	0,582	0,488	0,831	0,520					
Частинні пара-									
метри широко-	Haamuuni innani								
смугастості	частинні інварі	частинні інваріантні комоїнації коефіцієнтів кореляцій (R_i) зв'язків $I_j = f(\alpha_i)$							
спектру (α _i)									
α_1 (R ₁)	0,7436	0,6075	0,5177	0,5475					
$\alpha_2 (\mathbf{R}_2)$	0,8201	0,6460	0,4514	0,5736					
α_3 (R ₃)	0,6196	0,5524	0,4849	0,4944					
$\alpha_4 (R_4)$	0,7071	0,5076	0,4707	0,4683					
$\alpha_5 (R_5)$	0,8297	0,6710	0,5953	0,5711					
$\alpha_6 (R_6)$	0,9151	0,7135	0,5191	0,5983					
$\alpha_7 (R_7)$	0,6914	0,6101	0,5576	0,5156					
$\alpha_8 (\mathbf{R}_8)$	0,7890	0,5607	0,5413	0,4884					
Узагальнений параметр широко- смугастості спектру (а)	Середні значен	Середні значення узагальненого коефіцієнта кореляцій R_k зв'язків $I_j = f(\alpha_k)$							
$\alpha_{Q}(\overline{R}_{Q})$	0,7743	0,6151	0,5211	0,5358					
$\alpha_{q}(\overline{R}_{q})$	0,7694	0,6119	0,5192	0,5340					
$\alpha_{a}(\overline{R}_{a})$	0,7645	0,6086	0,5173	0,5322					
$\alpha_{g}(\overline{R}_{g})$	0,7595	0,6053	0,5154	0,5303					
$\alpha_{h}(\overline{R}_{h})$	0,7544	0,6020	0,5135	0,5285					

• 3а добутком
$$\sigma_r \cdot z$$
 (q=1- $\alpha/2$), де $s_r = \frac{1}{\sqrt{n-3}} = 0,4472$ – середнє квадратичне відхилення

0,4472 – середнє квадратичне відхилення
нормального розподілу випадкової величини
перетворення Фішера (z);
$$z_q = z_T (q = 1 - q/2) = 7$$

перетворення Фішера (z); $z_q = z_T (q = 1 - \alpha/2) = z_{0.975} = 1,96$ [77] – квантиль нормованого нормального розподілу [77], тоді добуток ($z_T \cdot \sigma_z$)=0,8765, розраховуючи значення випадкової величини z_p перетворення Фішера:

$$z'_{p} = \frac{1}{2} \ln \left(\frac{1+r_{p}}{1-r_{p}} \right); \quad z''_{p} = \frac{1}{2} \ln \left(\frac{1+R_{p}}{1-R_{p}} \right);$$

$$z_{p}^{\prime\prime\prime} = \frac{1}{2} \ln \left(\frac{1 + \overline{R}_{p}}{1 - \overline{R}_{p}} \right)$$
(39)

та визначаючи ступінь лінійності лінійного зв'язку за співвідношеннями:

$$\xi_{l}(z') = \frac{|z'_{p}|}{(\sigma_{r} \cdot z_{q})}; \ \xi_{l}(z'') = \frac{|z''_{p}|}{(\sigma_{r} \cdot z_{q})}; \ \xi_{l}(z''') = \frac{|z'''_{p}|}{(\sigma_{r} \cdot z_{q})}, (40)$$

а ступінь нелінійності – за співвідношеннями:

$$\xi_2(\mathbf{z}') = \frac{(\boldsymbol{\sigma}_{\mathbf{r}} \cdot \mathbf{z}_q)}{\left|\mathbf{z}'_p\right|}; \ \xi_2(\mathbf{z}'') = \frac{(\boldsymbol{\sigma}_{\mathbf{r}} \cdot \mathbf{z}_q)}{\left|\mathbf{z}''_p\right|}; \ \xi_2(\mathbf{z}''') = \frac{(\boldsymbol{\sigma}_{\mathbf{r}} \cdot \mathbf{z}_q)}{\left|\mathbf{z}''_p\right|}.$$
(41)

3.3. Результати розрахунків за формулами (34)-(41) перевірки статистичних нульових гіпотез

для генеральних коефіцієнтів кореляцій: $H_0: \rho' = 0; \quad H_0: \rho'' = 0; \quad H_0: \rho''' = 0$

)•	p = 0,	\mathbf{n}_0 .	р – 0,	\mathbf{n}_0 :	p = 0
	↑ оцінка		↑ оцінка		↑ оцінка
	$r_p \neq 0$		$R_p \neq 0$		$\overline{R}_{p} \neq 0$

Таблиця 2

Значущість і сила лінійних зв'язків (для α = 0,05) між питомою інтенсивністю об'ємного зношування (I_j) композиту на основі ПТФЕ + 20 % карбонізованого волокна УТМ-8 та інваріантних комбінацій моментів (M_i) спектральної щільності (СЩ) анізотропної поверхні контртіла із сталі 45, параметрами широкосмугастості (α_i) СЩ та узагальненого параметра широкосмугастості СЩ цієї спряженої поверхні

ана	Ступінь лінійності (ξ_1) та ступінь нелінійності (ξ_2) кореляційних зв'язків $I_j = f(M_i)$, $I_j = f(\alpha_i)$, $I_j = f(\alpha)$								
њиц	050	050км (I ₁)		200300км (I ₄)		300400км (І ₅)		300-400км (І ₅ ')	
Be	ξ1	ξ2	ξ1	ξ2	ξ1	ξ2	ξ1	ξ2	
	А. За критичним коефіцієнтом кореляцій (r _{ко})								
M ₁	1,334	0,749	1,002	0,998	0,357	2,804	1,060	0,944	
M ₂	1,247	0,802	1,167	0,857	0,944	1,060	1,291	0,775	
M ₃	1,180	0,847	1,111	0,900	0,880	1,136	1,264	0,791	
M_4	0,866	1,155	0,826	1,210	1,293	0,773	0,860	1,162	
M ₅	0,955	1,047	0,879	1,138	1,128	0,887	0,901	1,109	
M ₆	0,722	1,386	0,751	1,331	1,211	0,826	0,777	1,287	
M ₇	0,824	1,214	0,691	1,448	1,176	0,850	0,736	1,359	
α_1	1,052	0,950	0,860	1,163	0,733	1,365	0,775	1,291	
α_2	1,161	0,862	0,914	1,094	0,639	1,566	0,812	1,232	
α3	0,877	1,141	0,782	1,279	0,686	1,457	0,700	1,429	
α_4	1,001	0,999	0,718	1,392	0,666	1,501	0,663	1,509	
α_5	1,174	0,852	0,950	1,053	0,842	1,187	0,808	1,237	
α_6	1,295	0,772	1,010	0,991	0,735	1,361	0,847	1,181	
α_7	0,978	1,022	0,863	1,158	0,789	1,267	0,730	1,371	
α_8	1,116	0,896	0,793	1,260	0,766	1,306	0,691	1,447	
αο	1,096	0,913	0,870	1,149	0,737	1,356	0,758	1,319	
α	1,089	0,919	0,866	1,155	0,735	1,361	0,756	1,323	
α_{a}	1,082	0,924	0,861	1,161	0,732	1,366	0,753	1,328	
$\alpha_{\rm g}$	1,075	0,931	0,857	1,168	0,729	1,371	0,750	1,333	
$\alpha_{\rm h}$	1,068	0,937	0,852	1,174	0,727	1,376	0,748	1,337	
			Б. За	а критерієм С	тьюдента (t _т)				
M ₁	2,837	0,353	1,004	0,997	0,261	3,836	1,132	0,884	
M ₂	1,864	0,537	1,461	0,684	0,896	1,116	2,226	0,449	
M ₃	1,513	0,661	1,269	0,788	0,795	1,258	1,986	0,504	
M_4	0,775	1,291	0,720	1,389	2,255	0,443	0,767	1,305	
M ₅	0,916	1,092	0,793	1,261	1,321	0,757	0,827	1,209	
M ₆	0,594	1,685	0,627	1,594	1,658	0,603	0,658	1,521	
M ₇	0,716	1,396	0,560	1,787	1,495	0,669	0,609	1,641	
α_1	1,113	0,898	0,766	1,306	0,606	1,651	0,655	1,527	
α_2	1,435	0,697	0,847	1,180	0,506	1,975	0,701	1,427	
α3	0,790	1,266	0,663	1,508	0,555	1,802	0,569	1,756	
α_4	1,001	0,999	0,590	1,696	0,534	1,873	0,531	1,885	
α_5	1,488	0,672	0,906	1,104	0,742	1,348	0,696	1,436	
α_6	2,272	0,440	1,019	0,981	0,608	1,645	0,748	1,338	
α_7	0,958	1,044	0,771	1,297	0,672	1,487	0,602	1,660	
α_8	1,286	0,778	0,678	1,475	0,644	1,552	0,560	1,785	
α_Q	1,225	0,816	0,781	1,281	0,611	1,636	0,635	1,574	

Трибоповерхневі властивості полімерного композиту...

		продовжения таолиці 2							
α_q	1,206	0,829	0,774	1,291	0,608	1,644	0,632	1,582	
α_{a}	1,187	0,842	0,768	1,302	0,605	1,653	0,629	1,589	
$\alpha_{\rm g}$	1,169	0,856	0,761	1,314	0,602	1,661	0,626	1,597	
α_{h}	1,150	0,869	0,755	1,325	0,599	1,669	0,623	1,605	
	В. За перетворенням Фішера та добутком (z _т ·σ _z)								
M ₁	2,013	0,497	1,008	0,993	0,294	3,403	1,107	0,903	
M ₂	1,575	0,635	1,337	0,748	0,919	1,088	1,756	0,569	
M ₃	1,370	0,730	1,207	0,828	0,831	1,204	1,639	0,610	
M ₄	0,813	1,231	0,763	1,311	1,770	0,565	0,805	1,242	
M ₅	0,935	1,069	0,829	1,206	1,244	0,804	0,859	1,164	
M ₆	0,642	1,558	0,675	1,482	1,458	0,686	0,704	1,421	
M ₇	0,759	1,317	0,609	1,643	1,359	0,736	0,658	1,521	
α_1	1,094	0,915	0,804	1,243	0,654	1,529	0,701	1,426	
α_2	1,320	0,758	0,877	1,141	0,555	1,802	0,745	1,343	
α3	0,826	1,210	0,709	1,410	0,604	1,656	0,618	1,618	
α_4	1,006	0,995	0,638	1,567	0,583	1,715	0,580	1,726	
α_5	1,354	0,738	0,927	1,079	0,783	1,278	0,741	1,350	
α_6	1,778	0,563	1,020	0,980	0,656	1,524	0,788	1,269	
α_7	0,971	1,030	0,809	1,236	0,718	1,393	0,651	1,537	
α_8	1,219	0,820	0,723	1,383	0,691	1,446	0,609	1,642	
α_Q	1,176	0,850	0,818	1,222	0,659	1,517	0,683	1,465	
α_q	1,162	0,860	0,812	1,231	0,656	1,524	0,680	1,471	
α_{a}	1,149	0,870	0,806	1,240	0,653	1,531	0,677	1,478	
α_{g}	1,135	0,881	0,800	1,250	0,650	1,538	0,674	1,484	
α_{h}	1,122	0,892	0,794	1,259	0,647	1,545	0,671	1,491	

Продовження таблиці 2

зведені в табл. 2. У табл. 2 жирним шрифтом відмічені значущі коефіцієнти кореляцій. Як видно з табл. 1, за оцінками значущості коефіцієнтів лінійних кореляцій лінійного зв'язку $I_j = f(M_i)$ спостерігаються такі нерівності за I_i та шляхом тертя у мінорантному ряді впливу M_i на I_i :

 $S_1=0...50$ км (I₁): [(**M**₁)>(**M**₂, **M**₃)]>(**M**₄, M₅, M₆, M₇); $S_4=200...300$ км (I₄):[(**M**₂, **M**₃)>(**M**₁)]>(**M**₄, M₅, M₆, M₇);

 $S_5=300...400$ км (I5):[(M_4, M_5, M_6, M_7)]>(M_2, M_3)>(M_1);

S₅'=300-400 км (I₅'):[(**M**₂, **M**₃)>(**M**₁)]>(M₄, M₅, M₆, M₇).

Таким чином, закономірності, що виявлені для ізотропних поверхонь [71], аналогічно проявляються і для анізотропних поверхонь.

3.4. Результати (табл. 1) дозволили скласти мінорантні ряди за величиною щільності кореляційних зв'язків $I_j = f(\alpha_i)$ за частинними інваріантними комбінаціями коефіцієнтів лінійних кореляцій (R_i) для певних шляхів тертя S_j :

$$\begin{split} S_1 &= 0 \dots 50 \text{ Km } (I_1): \\ & [\alpha_6 > \alpha_5 > \alpha_2 > \alpha_8 > \alpha_1 > \alpha_4] > \alpha_7 > \alpha_3; \\ S_4 &= 200 \dots 300 \text{ Km } (I_4): \\ & [\alpha_6] > \alpha_5 > \alpha_2 > \alpha_7 > \alpha_1 > \alpha_8 > \alpha_3 > \alpha_4; \\ S_5 &= 300 \dots 400 \text{ Km } (I_5): \end{split}$$

$$\alpha_5 > \alpha_7 > \alpha_8 > \alpha_6 > \alpha_1 > \alpha_3 > \alpha_4 > \alpha_2;$$

$$\begin{split} S_5' = & 300\text{-}400 \text{ km } (I_5'): \\ \alpha_6' > \alpha_2' > \alpha_5' > \alpha_1' > \alpha_7' > \alpha_3' > \alpha_8' > \alpha_4'. \end{split}$$

Як видно з табл. 1, величини узагальненого параметра широкосмугастості СЩ анізотропної поверхні і його впливу на І_ј для всіх шляхів тертя можна розташувати у мінорантний ряд: $\alpha_Q > \alpha_q > \alpha_a > \alpha_g > \alpha_h$, при цьому для шляху тертя $\Delta S_j=0...50$ км цей ряд відповідає значущим коефіцієнтам кореляцій. Як видно з табл. 2 та вище наведеного аналізу, всі 3 методи перевірки нульової гіпотези та значущості вибіркових коефіцієнтів кореляцій привели до однакових якісних результатів:

• на початку тертя ($\Delta S_1 = 0...50$ км) інтенсивність зношування композиту (I1) лінійно залежить від інваріантних комбінацій моментів спектральної щільності (СЩ) шорсткої, анізотропної вихідної поверхні контртіла, в першу чергу від М1, яка пов'язана із нульовим моментом СЩ - з висотою нерівностей [ступінь лінійності кореляційного зв'язку $\xi_1 = 1,334$ за r_{кр}; ξ₁=2,837 за t_T; ξ₁=2,013 за (z_T·σ_z)], а потім – від інваріантних комбінацій М2, М3, які пов'язані моментами СЩ другого порядку - із градієнтом вихідної поверхні [ступінь лінійності кореляційного зв'язку ξ_1 =1,247 та 1,180 відповідно M₂ та M₃ за r_{кр}; ξ₁=1,864 та 1,513 відповідно за t_T; ξ₁=1,575 та 1,370 відповідно за (z_T·σ_z)] і далі нелінійно залежить від інваріантних комбінацій M₄, M₅, M₆, M₇, які пов'язані із кривиною вихідної поверхні у вершинах нерівностей – моментами СЩ четвертого порядку [ступінь нелінійності кореляційного зв'язку ξ2=1,047-1,386 для M₄-M₇ за r_{кр}; ξ₂=1,092-1,685 для M₄-M₇ за t_т; $\xi_2=1,069-1,558$ для M₄-M₇ за ($z_T \cdot \sigma_z$)];

• на шляху тертя 200-300 км провідну роль відіграє градієнт поверхні – інваріантні комбінації M_2 , M_3 , які пов'язані з моментами другого порядку [ступінь лінійності кореляційного зв'язку ξ_1 =1,111-1,167 за $r_{\kappa p}$; ξ_1 =1,269-1,461 за t_T ; ξ_1 =1,207-1,337 за ($z_T \cdot \sigma_z$)], а потім висота нерівностей – інваріантна комбінація M_1 , яка пов'язана з нульовим моментом СЩ [ξ_1 =1,002 за $r_{\kappa p}$; ξ_1 =1,004 за t_T ; ξ_1 =1,008 за ($z_T \cdot \sigma_z$)], а потім нелінійно І₄ залежить від M_4 , M_5 , M_6 , M_7 , які пов'язані із моментами СЩ четвертого порядку – кривиною поверхні [ступінь нелінійності кореляційного зв'язку ξ_2 =1,138-1,448 за $r_{\kappa p}$; ξ_2 =1,261-1,787 за t_T ; ξ_2 =1,206-1,643 за ($z_T \cdot \sigma_z$) для M_4 - M_7];

• при $\Delta S_i=300-400$ км головну роль у зносостійкості композиту відіграє кривина поверхні контртіла – інваріанти комбінацій моментів четвертого порядку СЩ вихідної поверхні М4, М5, М6, М7 [ступінь лінійності зв'язків І5=f(M4, M5, M6, M7) становить ξ_1 =1,128-1,293 за $r_{\kappa p}$; ξ_1 =1,321-2,255 за t_T ; ξ_1 =1,244-1,770 за (z_T · σ_z) для M_4 - M_7], потім M_2 , M_3 [ξ_1 =0,880-0,944 за $r_{\kappa p}$; ξ_1 =0,795-0,896 за t_T ; ξ_1 =0,831-0,919 за $(z_T \cdot \sigma_z)$], а після того – M_1 [ξ_1 =0,357 за $r_{\kappa p}$; $\xi_1=0,261$ за t_T; $\xi_1=0,294$ за ($z_T \cdot \sigma_z$)]. При цьому між I₅ та інваріантними комбінаціями М₁, пов'язаним з моментом нульового порядку – висотою нерівностей вихідної поверхні існує нелінійний зв'язок [ступінь нелінійності кореляційного зв'язку І5=f(M1) становить ξ₂=2,804 за r_{кр}; ξ₂=3,836 за t_T; ξ₂=3,403 за (z_T·σ_z)], а між І5 та інваріантними комбінаціями М2, М3, що пов'язані з моментами СЩ другого порядку - ґрадієнтом вихідної поверхні [ступінь нелінійності кореляційних зв'язків І5=f(M2, M3) становить ξ2=1,060-1,136 за г_{кр}; <u>ξ</u>2=1,116-1,258 за t_T; <u>ξ</u>2=1,088-1,204 за (z_T·σ_z) для М₂, М₃];

• якщо при ∆S₅'=300-400 км давати оцінку сили зв'язку І₅=f(M_i), де M_i – інваріантні комбінації моментів СЩ не вихідної поверхні, а тієї, що утворилася у процесі тертя та зношування на момент S=300 км, то ми повертаємося до оцінок (більш значущих кількісно) кореляційних зв'язків $I_5 = f(M_1)$, що відповідають зв'язку І₄=f(M_i) на шляху тертя $\Delta S_4 = 200...300$ км: інтенсивність зношування композиту лінійно залежить, в першу чергу, від інваріантних комбінацій М2, М3, що пов'язані з моментами СЩ другого порядку шорсткої поверхні на початковий момент шляху тертя S=300 км [ступінь лінійності кореляційного зв'язку $I_5 = f(M_2, M_3)$ становить ξ_1 =1,264-1,291 за $r_{\kappa p}$; ξ_1 =1,986-2,226 за t_T ; ξ_1 =1,639-1,756 за ($z_T \cdot \sigma_z$)], а потім лінійно залежить від інваріантної комбінації М₁, що пов'язана з моментом нульового порядку – висотою нерівностей шорсткої поверхні на початку тертя S=300 км [ступінь лінійності кореляційного зв'язку $I_5 = f(M_1)$ становить ξ_1 =1,060 за $r_{\kappa p}$; ξ_1 =1,132 за t_T ; ξ_1 =1,107 за (z_T·σ_z)]. При цьому І₅ нелінійно залежить від інваріантних комбінацій M₄, M₅, M₆, M₇, які пов'язані з моментами СЩ четвертого порядку шорсткої поверхні на момент шляху тертя S=300 км - кривиною поверхні [ступінь нелінійності кореляційного зв'язку $I_5 = f(M_4, M_5, M_6, M_7)$ становить $\xi_2 = 1,109 - 1,359$ за $r_{\kappa p}$; $\xi_2 = 1,209 - 1,641$ sa t_T; $\xi_2 = 1,164 - 1,521$ sa (z_T· σ_z)].

При оцінці (табл. 2) щільності кореляційних зв'язків між інтенсивністю зношування композиту (I_i) та частинними параметрами широкосмугастості спектрів (а_i) анізотропної поверхні контртіла, які пов'язані з інваріантними комбінаціями (M_i), знайдено, що для I_i лише з $\alpha_1 = f(M_1, M_2, M_4)$, $\alpha_2 = f(M_1, M_5, M_4)$ M_6), $\alpha_4 = f(M_1, M_2, M_7)$, $\alpha_5 = f(M_1, M_3, M_4)$, $\alpha_6 = f(M_1, M_3, M_4)$ M_5), $\alpha_8 = f(M_1, M_3, M_7)$ вихідної поверхні на шляху тертя $\Delta S_1=0...50$ км та з $\alpha_6=f(M_1, M_3, M_5)$ вихідної поверхні на шляху тертя $\Delta S_2 = 200...300$ км існує надійний лінійний зв'язок зі ступенем лінійності ξ_1 =1,001-1,295 3a $r_{\kappa p}$; ξ_1 =1,001-2,272 3a t_T ; ξ_1 =1,006-1,778 за (z_T·σ_z). Для решти випадків – кореляційні зв'язки нелінійні зі ступенями нелінійності $\xi_2=1,022$ -1,566 за $r_{\kappa\nu}$; ξ_2 =1,044-1,975 за t_T ; ξ_2 =1,030-1,802 за $(\mathbf{z}_{\mathrm{T}} \cdot \boldsymbol{\sigma}_{\mathrm{z}}).$

Створення узагальненого параметра широкосмугастості а на основі частинних параметрів широкосмугастості спектру анізотропної поверхні за середніми величинами, дозволяє дати оцінку сили кореляційних зв'язків $I_j = f(\alpha)$, провівши розрахунки коефіцієнтів кореляцій для залежностей $I_j = f(\alpha_k)$, де k відноситься до кубічної (Q), квадратичної (q), арифметичної (a), геометричної (g) та гармонійної (h) середньої а [необхідність розрахунку а для k-середніх обґрунтовано неповною розкритою природою та механізмом процесу зношування на анізотропній поверхні під час використання одного (узагальненого) параметра широкосмугастості спектру)].

Як видно з табл. 2, спостерігається лінійна залежність І_j=f(α_k) (для всіх k) лише для початкового шляху тертя ΔS_j =0...50 км зі ступенями лінійності ξ_1 =1,068-1,096 за $r_{\rm kp}$; ξ_1 =1,150-1,225 за t_T; ξ_1 =1,122-1,176 за ($z_{\rm T} \cdot \sigma_z$). Для решти шляхів тертя та всіх k спостерігається нелінійна кореляція для залежностей І_j=f(α_k) зі ступенями нелінійності ξ_2 =1,149-1,376 за $r_{\rm kp}$; ξ_2 =1,281-1,669 за t_T; ξ_2 =1,222-1,545 за ($z_{\rm T} \cdot \sigma_z$).

Висновки

1. Уперше для анізотропних шорстких поверхонь введено у науковий обіг означення 8-ми частинних параметрів та узагальнений параметр широкосмугастості спектру, який побудований на частинних параметрах широкосмугастості спектральної щільності (СЩ), які, у свою чергу, пов'язані з інваріантами моментів СЩ, або на частинних функціях бажаності, пов'язаних параметрами широкосмугастості спектру.

2. Уперше для анізотропних шорстких поверхонь у науковий обіг введені означення, створених за принципом аналогії, комбінацій коефіцієнтів кореляцій, завдяки яким виявлена сила зв'язків інваріантів спектральних моментів СЩ, частинних та узагальнених параметрів широкосмугастості СЩ з питомою інтенсивністю об'ємного зношування.

3. Питома інтенсивність об'ємного зношування карбопластика на основі ПТФЕ та карбонізованих волокон під час динамічного контакту з поверхнею контртіла сталі 45 залежить від вихідних моментів СЩ нульового, другого та четвертого порядків по-

верхні контртіла у більшій степені на початку шляху тертя та зношування $\Delta S=0...50$ км, ніж $\Delta S=300-400$ км під час випробувань у вологому повітрі в режимі поміркованих питомих навантажень, тобто топографія поверхні спряженого металу є домінуючим чинником у визначенні величини зносу карбопластиків не тільки на початку тертя (тобто пов'язане з параметрами вихідної поверхні), але і в процесі тертя та зношування, коли шорстка спряжена поверхня твориться самим композитом.

4. Встановлено, що на початку динамічного контакту (шлях тертя S=0...50 км) інваріантні комбінації моментів спектральної щільності шорсткої поверхні металевого контртіла, що зв'язані з нульовим моментом (з висотним параметром), у більшій степені лінійно впливають на інтенсивність зношування карбопластика, ніж інваріантні комбінації, що пов'язані із спектральними моментами другого порядку (градієнтом поверхні), а вплив інваріантних комбінацій, що пов'язані з моментами четвертого порядку, впливають нелінійно; під час подальшого динамічного контакту (S=200-300 км) цей вплив аналогічний, лише різниця полягає у тому, що лідером стають інваріанти, що пов'язані з ґрадієнтом поверхні (лінійно), потім з висотою нерівностей (лінійно) і потім нелінійно із кривиною у вершині мікронерівностей; під час більш довгого динамічного контакту S>300км лідером стають інваріанти, що пов'язані з кривиною (лінійно), потім ґрадієнтом поверхні (нелінійно) та значно менше – з висотою мікронерівностей (нелінійно).

Сіренко Г.О. – доктор технічних наук, професор, завідувач кафедри неорганічної та фізичної хімії; *Солтис Л.М.* – кандидат хімічних наук, викладач кафедри неорганічної та фізичної хімії...

- [1] Ju.V. Ashkerov, Ju.V. Zaikin, A.Ju. Paplev, Trenie i iznos 5(1), 651 (1984).
- [2] N.V. Balabanova, S.A. Chizhik, Z. Rimuza, Trenie i iznos 27(5), 514 (2006).
- [3] N.K. Bachinskaja, Issledovanija kontaktnyh harakteristik sherohovatyh, sil'no anizotropnyh poverhnostej: Dis. ... kand. tehn. nauk: 05.02.04 (Hmel'nickij, 1994).
- [4] A. Bengtsson, A. Renberg, Trenie i iznos 7 (1), 27 (1986).
- [5] Je.A. Bulanov, Trenie i iznos, 27 (2), 132 (2006).
- [6] A.I. Burja, A.D. Derkach, V.I. Shemavnev, Trenie i iznos, 27 (1), 98 (2006).
- [7] V.A. Valetov, Trudy LKI «Tehnologija korpusostroenija, sudovogo mashinostroenija i svarki v sudostroenii» (Leningrad), 19 (1978).
- [8] N.B. Demkin, Trenie i iznos, 3 (4), 586 (1982).
- [9] N.B. Demkin, S.V. Udalov, V.A. Alekseev, V.V. Izmajlov, A.N. Bolotov, Trenie i iznos, 29 (3), 231 (2008).
- [10] M.N. Dobychin, Trenie i iznos, 1 (2), 341 (1980).
- [11] I.V. Kragel's'kij, V.V. Aleksin, V.S. Kolebanov i dr., Harakteristiki vzaimodejstvija v mikrogeometrii, opredeljajushhie kontaktnoe vzaimo-dejstvie sherohovatyh poverhnostej (IMASh, Moskva, 1973).
- [12] I.V. Kragel's'kij, Trenie i iznos, 1 (1), 12 (1980).
- [13] I.I. Kudish, Trenie i iznos, 12 (2), 197 (1991).
- [14] V.B. Lemberskij, Trenie i iznos, 4 (2), 301 (1983).
- [15] N.K. Myshkin, M.I. Petrokovec, S.A. Chizhik, V.V. Konchic, A.I. Sviride-nok, Trenie i iznos, 4 (5), 845 (1983).
- [16] L.Ju. Pruzhanskij, Trenie i iznos, 4 (5), 801 (1983).
- [17] A.I. Svirdenok, T.F. Kalmykova, Trenie i iznos, 1 (5), 898 (1980).
- [18] I.O. Sivak, V.V. Savuljak, S.I. Suhorukov, E.I. Sivak, The Bulletin of Politechnic Institute of Jassi. XLVIII (LII), 3-4, 165 (2002).
- [19] G.A. Sirenko, N.F. Semenjuk, 3 Vsesoju. soveshhanija po uplotnitel'noj tehnike (VNIIkompres¬sormash, Sumy, 1982), s. 46.
- [20] V.T. Fonotov, I.A. Vjatkin, Ju.V. Volkov, Problemy trenija i iznashivanija, (4), 66 (1973).
- [21] Ja. Cuan, S.A. Chizhik, Ju.M. Pleskachevskij, A.L. Zajcev, Trenie i iznos, 28 (1), 77 (2007).
- [22] I.H. Chepoveckij, V.I. Levitas, S.A. Jushhenko, Trenie i iznos, 7 (5), 841 (1986).
- [23] I.H. Chepoveckij, V.L. Strizhakov, Trenie i iznos, 2 (5), 928 (1981).
- [24] A.A. Chernov, BSJe, (13), 435 (1973).
- [25] V.M. Shavelin, A.S. Shheglov, Trenie i iznos, 7 (1), 148 (1986).
- [26] I.B. Shenderov, A.S. Duhanin, V.A. Kalinov, Trenie i iznos, 10 (2), 313 (1989).
- [27] V.G. Shherbinskij, Trenie i iznos, 12 (6), 1133 (1991).
- [28] M.O. Jakobson, Kachestvo poverhnosti detalej mashin, (5), 120 (1961).
- [29] V.M. Baranov, E.M. Kudryavstev, G.A. Sarychev, A.Z. Stopyra, Friction and wear, 24 (2), 139 (2002).
- [30] A.Ya. Grigoriev, K.-L. Cho, N.K. Myshkin, Friction and wear, 22 (2), 128 (2000).
- [31] V.S. Kharchenkov, V.A. Pogonyshev, V.I. Lemeshko, Friction and wear, 21 (1), 91 (1999).
- [32] A.A. Khmyl, A.P. Dostanko, V.G. Anisimovich, S.A. Chizhik, Friction and wear, 18 (4), 491 (1996).
- [33] V.M. Khokhlov, Friction and wear 19(3), 415 (1997).

- [34] T.R. Thomas, Wear 79(1), 73 (1982).
- [35] T.R. Thomas, Wear 33(2), 205 (1975).
- [36] V.P. Tikhomirov, O.A. Gorlenko, Friction and wear 18(1), 74 (1996).
- [37] A.I. Voyachek, Friction and wear 18(3), 307 (1996).
- [38] D.J. Whitehouse, J.F. Archard, Proceedings of the Royal Soc. 316(A), 97 (1970).
- [39] D.J. Whitehouse, J.F. Archard, Surface Mechanics, Proceedings of the ASME Annual winter meeting, Los Angeles, Calif, November 16 (1969).
- [40] A.A. Yevtushenko, E.G. Ivanik, E.V. Kovalenko, Friction and wear 20(1), 17 (1998).
- [41] I.A. Zharov, Friction and wear 18(6), 715 (1996).
- [42] N.F. Semenjuk, N.K. Bachinskaja, Problemy tribologii (3), 103 (1998).
- [43] N.F. Semenjuk, Trenie i iznos 7(6), 1017 (1986).
- [44] N.F. Semenjuk, G.A. Sirenko, Trenie i iznos 1(3), 465 (1980).
- [45] N.F. Semenjuk, G.A. Sirenko, Trenie i iznos 1(5), 815 (1980).
- [46] M.F. Semenjuk, G.O. Sirenko, L.M. Soltis, Fizika i himija tverdogo tila 12(1), 200 (2011).
- [47] M.F. Semenjuk, G.O. Sirenko, L.M. Soltis, Visnik Prikarp. nac. un-tu im. V. Stefanika. Ser. Himija (IH), 62 (2010).
- [48] N.F. Semenjuk, K.S. Sokolan, Problemy tribologii 2 (2000).
- [49] N.F. Semenjuk, Trenie i iznos 7(5), 830 (1986).
- [50] N.F. Semenjuk, Trenie i iznos 7(1), 85 (1986).
- [51] N.F. Semenjuk, E.V. Terleckaja, Problemy tribologii (1), 83 (1998).
- [52] N.F. Semenjuk, E.V. Terleckaja, Problemy tribologii (1), 90 (1998).
- [53] G.O. Sirenko, O.V. Kuzishin, L.Ja. Midak, Chetverta mizhnarodna naukovo-praktichna konferencija «Rozvitok naukovih doslidzhen' 2008» (InterGrafika, Poltava, 2008), s. 38.
- [54] G.O. Sirenko, M.F. Semenjuk, I Mizhnarod. simpozium "Fiziko-himichna mehanika kompozicijnih materialiv" (Ivano-Frankivs'k, 1993), s. 53.
- [55] G.O. Sirenko, M.F. Semenjuk, L.M. Soltis, Visnik Prikarp. nac. un-tu im. V. Stefanika. Ser. Himija (H), 123 (2010).
- [56] G.O. Sirenko, M.F. Semenjuk, L.M. Soltis, Fizika i himija tverdogo tila 11(4), 914 (2010).
- [57] G.O. Sirenko, M.F. Semenjuk, L.M. Soltis, Fizika i himija tverdogo tila 11(3), 768 (2010).
- [58] G.O. Sirenko, L.M. Soltis, Fizika i himija tverdogo tila 11(2), 423 (2010).
- [59] G.O. Sirenko, L.M. Soltis, Visnik Prikarp. nac. un-tu im. V. Stefanika. Ser. Himija (VII), 104 (2009).
- [60] A.P. Husu, Ju.R. Vittenberg, V.A. Pal'mov, Sherohovatost' poverhnostej. Teoretiko-verojatnostnyj podhod (Nauka, Moskva, 1975).
- [61] M.I. Jadrenko, Spektral'naja teorija sluchajnyh polej (Vishha shk., Kiev, 1980).
- [62] P.R. Najjak, Problemy trenija i smazki 93 (Ser. F, 3), 85 (1971).
- [63] I.Ja. Shtaerman, Kontaktnaja zadacha teorii uprugosti (Gostehizdat, Moskva-Leningrad, 1949).
- [64] M.G. Cooper, B.B. Mikis, M.M. Yovanovich, International Journal of heat and mass transfer 12, 279 (1969).
- [65] A.W. Bush, R.D. Gibson, G.P. Keogh, Res. Comm. Mech. 3, 169 (1976).
- [66] A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1976).
- [67] A.W. Bush, R.D. Gibson, G.P. Keogh, Wear 40, 399 (1976).
- [68] S.B. Ajnbinder, Je.L. Tjunina, Vvedenie v teoriju trenija polimerov (Zinatne, Riga, 1978).
- [69] S.B. Ajnbinder, Je.L. Tjunina, Mehanika polimerov (2), 241 (1977).
- [70] S.B. Ajnbinder, Je.L. Tjunina, Mehanika polimerov (4), 651 (1977).
- [71] G.O. Sirenko, L.M. Soltis, Fizika i himija tverdogo tila 14 (3), 636 (2013).
- [72] N.F. Semenjuk, T.F. Kalmykova, Trenie i iznos 4 (3), 467 (1983).
- [73] M.S. Longe-Higgins, Statisticheskaja geometrija sluchajnyh poverhnostej (Mir, Moskva, 1964).
- [74] G. Korn, T. Korn. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov: Opredelenija, teoremy, formuly. Izd. 4-e (Nauka, Moskva, 1978).
- [75] G.O. Sirenko, Stvorennja antifrikcijnih materialiv na osnovi poroshkiv termotrivkih polimeriv ta vuglecevih volokon: Dis. ... dokt. tehn. nauk (In-t problem materialoznavstva im. I.M. Francevicha NANU, Kiïv, 1997).
- [76] P. Mjuller, P. Nojman, R. Shtorm, Tablicy po matematicheskoj statistike (Finansy i statistika, Moskva, 1982).
- [77] M.N. Stepnov, Statisticheskaja obrabotka rezul'tatov mehanicheskih ispytanij (Mashinostroenie, Moskva, 1972).

H.O. Sirenko, L.M. Soltys

Tribosurface Properties of Polymer Composite in Friction and Wear on Anisotropic Rough Surface of Steel 45

Vasyl Stefanyk' Precarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine, e-mail: <u>orijant@gmail.com</u>

Regularities of change of anisotropic roughness surfaces of steel 45 in friction and wear in a pair with polymer composite has been researched. It has been detected that the topography of the conjugated metal surface with polymer composite is the dominant factor in determining the value of wear of carbon-plastics at both the start and in the process friction and wear when the metal surface roughness is created by the composite. It has been established that the invariant combinations of zero-order moments in greater degree linearly influences on wear of the polymer sample than invariant combinations of second-order moments, and the wear nonlinearly depends from invariant combinations of fourth-order moments.

Keywords: roughness, intensity of wear, anisotropic surface, friction, composite polymer material, moments of spectral density, minorant rows.