PACS number(s): 71.35 Cc, 78.40 Fy

ISSN 1729-4428

В.Б. Боледзюк¹, В.М. Камінський¹, З.Д. Ковалюк¹, В.М. Склярчук², О.Ф. Склярчук²

IЧ-поглинання гідрованих шаруватих кристалів GaSe

¹Інститут проблем матеріалознавства НАН України, Чернівецьке відділення вул. І. Вільде, 5, Чернівці, Україна 58001, e-mail: <u>chimsp@ukrpost.cv.ua</u> ²Чернівецький національний університет, вул. Коцюбинського, 2, Чернівці, 58012, Україна

На установці ИКС-29 в області 2,5 ÷ 22,5 мкм при T = 77 К проведені вимірювання спектрів пропускання вихідних та гідрованих із газової фази кристалів GaSe. Показано, що спостережувані смуги поглинання вихідного GaSe відповідають гармонікам другого та третього порядків активних IЧ-фононів. Для гідрованих кристалів H_xGaSe встановлено зміщення енергетичного положення смут поглинання, появу лінії локальних коливань водневої підсистеми, а також збільшення пропускання в області $\lambda < 12,5$ мкм.

Ключові слова: шаруватий кристал, селенід галію, гідрування, ІЧ-поглинання.

Стаття поступила до редакції 08.11.2012; прийнята до друку 15.06.2013.

Вступ

На даний час велике значення має вивчення процесів впровадження водню в низькорозмірні структури з метою створення водень насичених матеріалів з підвищеним вмістом водню, волневих сенсорів, твердих електролітів з високою провідністю [1, 2].

Водень, впроваджений в метали, може суттєво впливати на їх фізичні властивості. З досліджень [1] встановлено появу надпровідності в системі Ме-Н, зміну магнітних властивостей металів, зокрема характеру магнітного впорядкування, наявність фазових перетворень типу «газ-рідина-тверде тіло», тощо. Вивченню властивостей воденьмісних напівпровідників приділяється менше уваги в зв'язку із значно меншою концентрацією впровадженого водню [3].

В роботах [4, 5] приведено результати дослідження процесів впровадження водню в шаруваті напівпровідникові кристали GaSe. Показано, що концентрація впровадженого водню х в H_x GaSe при високих тисках 4,2 ÷ 4,7 МПа складає 0,47 ÷ 2,22 ф. од., вивчено електричні та оптичні (в області екситонного поглинання) властивості.

Дослідження оптичних властивостей при великих довжинах хвиль дозволяють отримати інформацію про характер сил зв'язку та домішкові рівні кристала. Авторами роботи [6] встановлено появу локальних резонансних мод в оптичних спектрах (область 12 ÷ 24 см⁻¹) лужно-галоїдних кристалів KCl, KBr, які містять домішки літію, срібла, водню та дейтерію, напівширина та інтенсивність яких суттєво залежать від температури. При гідруванні фулеренів, в ІЧспектрах досліджуваних зразків, присутні інтенсивні смуги поглинання в області валентних С–Н коливань (2800 ÷ 3000 см⁻¹) [2].

Метою даної роботи є вивчення особливостей ІЧспектрів воденьмісних кристалів GaSe.

I. Методика експерименту

Монокристали GaSe вирощували методом Бріджмена з розплаву стехіометричного складу. Зразки мали р-тип провідності концентрацією дірок р = $10^{13} \div 10^{14}$ см⁻³. При T = 300 К їх рухливість становила $\mu = 25 \div 30$ см²/В*с. методом Вайсенберга встановлено, що досліджувані кристали мають структуру є-GaSe (просторова група D_{3h}^1). Для оптичних досліджень використовували зразки, сколені з однієї шайби.

Гідрування кристалів GaSe проводили в кварцових ампулах протягом 48 годин при температурах 400 та 500 °C та тиску водню ≈ 0,3 МПа. Згідно закону Сівертса, у випадку двохатомного газу, що розпадається на окремі атоми при входженні тверде тіло, кількість в \sqrt{P} впровадженого водню пропорційна (P парціальний тиск газу в системі).

Вимірювання коефіцієнта пропускання проводились на спектрофотометрі ИКС-29. Похибка вимірювання пропускання в діапазоні 10 ÷ 100 см⁻¹

склала 1 %. Дослідження проводились при поляризації $E \perp c$. Використання кріостатної системи спектрофотометра дало можливість провести дослідження гідрованих кристалів GaSe при температурі рідкого азоту.

II. Результати експерименту та їх обговорення

На рис. 1 приведено спектри пропускання вихідних та гідрованих кристалів GaSe в області $2,5 \div 22,5$ мкм при поляризації $E \perp c$, отримані при кімнатній температурі, на яких стрілками відмічено смуги поглинання. Приведені ІЧ-спектри узгоджуються із спектрами GaSe, отриманими в роботах [7, 8]. В таблиці 1 приведено значення хвильового числа υ спостережуваних смуг поглинання досліджуваних кристалів моноселеніду галію, а також значення оптичних мод β -GaSe [9] і ε -GaSe [10].

Для ідентифікації смуг поглинання вихідного GaSe використовували результати робіт [7-9]. Згідно теорії груп в точці Г зони Бріллюена існує п'ять поперечних оптичних мод, активних в ІЧобласті та спектрах комбінаційного розсіювання

Рис. 1. Спектри пропускання вихідних та гідрованих при 500 (а) та 400 °С (б) кристалів GaSe в IЧ-області при T = 293 К. Стрілками позначено активні оптичні смуги поглинання.

Таблиця 1

Значення частот υ смуг поглинання кристалів GaSe та їх водневих сполук впровадження H_xGaSe і оптичних мод β - и ϵ -GaSe згідно [9, 10] при T = 293 К

Експеримент			Літературні дані				
	ε–GaSe	ε–H _x GaSe	β–GaSe, [9]			ε–GaSe, [10]	
№ смуги	Спостережувані смуги поглинання υ, см ⁻¹ .	Спостережувані смуги поглинання υ, см ⁻¹ .	Смуги поглинання υ, см ⁻¹ .	Моди	Ідентифікація v, см-1.	Моди	Ідентифікація υ, см ⁻¹ .
1	478	469	211	TO υ ₀ (Γ)	211	E'	19.5
2	513	513	269	TO υ ₃ (Γ)	269	$E^{\prime\prime}$	60
3	538	529	309	TO υ ₄ (Γ)	309	A'_{l}	134.3
4	558	549	423	$2v_0$	222	<i>E'</i>	211.9
5	677	645	442	лок. U ₅	442	E' (TO)	214.0
6	-	719	480	$\upsilon_0 \!\!+\!\! \upsilon_3$	480	E (LO)	252.1
	-	_	510	лок. U5	510	A'_{l}	308.0
	-	_	540	$2v_3$	538		
	-	_	550	v_1+v_5	550		
	_	_	618	$2v_4$	618		

Рис. 2. Спектри пропускання гідрованих при 400 (а) та 500 °С (б) кристалів GaSe.

світла (КРС): $\upsilon_0 = 212 \text{ см}^{-1}$, $\upsilon_1 = 40 \text{ см}^{-1}$, $\upsilon_2 = 130 \text{ см}^{-1}$, $v_3 = 260 \text{ cm}^{-1}$ i $v_4 = 309 \text{ cm}^{-1}$ [9]. Інтерпретація спостережуваних смуг поглинання 1-4 вихідного є-GaSe може бути наступною: смуги поглинання $\upsilon = 478$ і 513 см⁻¹ представляють собою згідно [9], комбінацію мод v_0+v_3 та моду локальних коливань відповідно. В роботі [8] дані смуги поглинання ідентифікують як гармоніки другого порядку активних ІЧ-фононів мод Е́(TO) і Е́(LO) з частотами 236 та 254,7 см⁻¹. Смуга ІЧ-поглинання з частотою $v = 538 \text{ cm}^{-1}$ обумовлена двохфононним 212 поглинанням, а смуга з $v = 558 \text{ см}^{-1}$ представляє комбінаційну смугу типу $v_1 + v_6$ [9]. B досліджуваних нами кристалах є-GaSe спостерігалась смуга поглинання $\upsilon = 677 \text{ см}^{-1}$, що близько до значення $\upsilon = 667 \text{ см}^{-1}$ смуги ІЧ-спектрів роботи [8], яке відповідає третій гармоніці ТО-моди з частотою 222 см⁻¹. З приведених в таблиці даних, можна виділити внутрішарові та міжшарові коливання в фононному спектрі GaSe. Низькочастотна мода $(\upsilon = 19.8 \text{ cm}^{-1})$ відноситься до міжшарового коливання, всі решта моди – внутрішарові.

3 спектрів пропускання гідрованих кристалів H_xGaSe (рис. 1) встановлено зміщення деяких смуг поглинання в низькочастотну область, появу нових смуг поглинання, а також збільшення пропускання в області $\lambda < 12,5$ мкм. Структура GaSe складається із шарових пакетів ...-Se-Ga-Ga-Se-..., які розміщені згідно закону щільних упаковок ...-АββА ВууВвздовж кристалографічної вісі С. Всередині шарових пакетів зв'язок має іонно-ковалентний характер, між шарами існує слабка ван-дерваальсівська взаємодія. Зміщення смуг поглинання внутрішарових мод в низькочастотну область свідчить про впровадження атомів водню в GaSe, які можуть розміщуватись в октаедричних та тетраедричних пустотах міжшарового простору, подібно інтеркальованим шаруватим кристалам TiS₂ та MoS₂ [11]. Крім того, згідно квантової моделі дифузії, атом водню, який локалізований в міжвузлі, може знаходитись в різних дискретних станах і внаслідок взаємодії з фононами можливі переходи між його дискретними станами [3]. Впровадження атомів водню призводить до деформації кристалічної гратки, що підтверджується збільшенням параметрів елементарної комірки GaSe [5].

Для кристалів H_xGaSe встановлено збільшення пропускання в довгохвильовій області спектру. З проведених розрахунків ($\lambda = 20$ мкм) отримані наступні значення коефіцієнтів пропускання α: 6,71; 4,51 см⁻¹ для GaSe (d = 1,09 мм) та 11,1; 9,03 см⁻¹ – для кристалів H_xGaSe (d = 1,25 мм) при R = 0,2 та 0,3 відповідно (R – коефіцієнт відбивання зразка).

Спектри пропускання гідрованих при температурах 400 та 500 °С кристалів GaSe. досліджені при T = 77 та 293 К приведено на рис. 2. Встановлено появу нової локальної моди з частотою $\upsilon = 500 \text{ см}^{-1}$ (рис. 2,6) при T = 77 K в спектрі гідрованого при температурі 500 °С кристалу, для якого згідно закону Сівертса, очікувана кількість впровадженого водню більша. Можна припустити, що наявність даної смуги при 77 К пов'язана з процесом впорядкованого розміщення атомів водню кристалічній гратці GaSe. З підвищенням в температури, внаслідок зростання коефіцієнта дифузії $(D \sim exp(-E_a/kT))$, де Е_а – значення енергетичного бар'єру) атоми водню будуть розміщуватись більш хаотично, що призведе до зникнення даної смуги при 293 К.

Встановлено також збільшення напівширини смуги поглинання для $\upsilon = 510 \text{ см}^{-1}$ з ростом температури для зразків H_xGaSe гідрованих при 400 °С (рис. 2,а). Теоретично отримана в [12] температурна залежність напівширини смуги поглинання лужно-галоїдних локальної моди кристалів має вигляд: ٦

$$\Gamma_{0}(T) = \Gamma_{0}(0) \times \left\{ \frac{3}{\left[\exp\left(\frac{\mathbf{h}w_{0}^{*}}{kT}\right) - 1 \right]^{2}} + \frac{3}{\exp\left(\frac{\mathbf{h}w_{0}^{*}}{kT}\right) - 1} + 1 \right\}$$

ſ

де: $\Gamma_0(0)$ – напівширина локальної моди при T = 0 K, ω₀-ефективна частота локальної моди, яка складає $\approx 1/3\omega_{\text{LOC}}$.

Експериментально отримане значення відношення на півширин при температурах 293 та 77 K становить $\Gamma_0(293)/\Gamma_0(77) = 2$ для смуги $\upsilon = 510$ см⁻¹ поглинання не узгоджується 3 розрахованим згідно формули (1) $\Gamma_0(293)/\Gamma_0(77) = 4,47$ для локальної моди. Тому, можна припустити, що смуга поглинання $\upsilon = 510$ см⁻¹ відповідає не локальним коливанням гратки, які виникають внаслідок наявності домішкових атомів у вихідному GaSe, а гармоніці другого порядку з частотою v = 254.7 см⁻¹ [8].

Висновки

Показано, що спостережувані смуги поглинання вихідного GaSe в області довжин хвиль 2,5 ÷ 22,5 мкм відповідають гармонікам другого та третього порядків активних ІЧ-фононів та комбінаційному поглинанню фононів внутрішарових мод.

Впроваджені атоми водню можуть розміщуватись в тетраедричних та октаедричних

- [1] Г. Алефельд, Ф. Фелькль, Водород в металлах (Мир, Москва, 1981).
- [2] Б.П. Тарасов, Н.Ф. Гольдшлегер, А.П. Моравский, Успехи химии 70(2), 149 (2001).
- [3] Е.Г. Максимов, О.А. Панкратов. УФН 116(3), 385 (1975).
- [4] Л.М. Куликов, А.А. Семенов-Кобзарь, Н.Б. Кёниг, Л.Г. Аксельруд, В.Н. Давыдов, В.М. Каминский, М.Н. Пырля, В.В. Нетяга, Доп. НАН України, Сер. Матеріалознавство 1, 102 (2006).
- [5] В.М. Каминский, З.Д. Ковалюк, М.Н. Пырля, С.В. Гаврылюк, В.В. Нетяга, Неорган. матер. 41(8), 1 (2005).
- [6] S.S. Mitra, R.S. Singh. Phys. Rew. Lett. 16(16), 694 (1966).
- [7] Y.-K. Hsu, Ch.-W. Chen, J.Y. Huang, C.-L. Pan, J.-Y. Zhang, C.-Sh. Chang, Optics Express 14(12), 5485 (2006).
- [8] A. U. Kulibekov. Turk. J. Phys. 32, 227 (2008).
- [9] В.П. Мушинский, М.И. Караман, Оптические свойства халькогенидов галлия и индия (Штиинца, Кишинёв, 1973).
- [10] N. Kuroda, O. Ueno and Y. Nishina, Phys. Rew. B 35(8), 3860 (1987).
- [11] Л.М. Куликов, Л.Г. Аксельруд, А.А. Семенов-Кобзарь, М.М. Антонова, Неорган. матер. 27(6), 1186 (1991).
- [12] E. Hanamura, T. Inui, J. Phys. Soc. Japan. 18(5), 690 (1963).

V.B. Boledzyuk¹, V.M. Kaminskii¹, Z.D. Kovalyuk¹, V.M. Sklyarchuk², E.F. Sklyarchuk²

IR Absorption in Hydrogenated Layered GaSe Crystals

¹Chernivtsi Department of the I.M. Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Iryna Vilde St. 5, Chernivtsi, 58001, Ukraine; e-mail: <u>chimsp@ukrpost.ua</u> ²Chernivtsi National University, Kotsyubynsky St., 2, Chernivtsi, 58012, Ukraine

Infrared (IR) transmission spectra in the range 2.5 to 22.5 μ m are measured at temperatures 77 and 300 K for initial and hydrogenated from gaseous phase GaSe crystals. It is shown that the observed absorption bands in initial GaSe crystals correspond to the second and third harmonics of IR-active phonons. For hydrogenated H_xGaSe crystals we have established a shift of the energy position of the absorption bands, the appearance of a line of local vibrations in the hydrogen subsystem at T = 77 K as well as essentially increased transmission in the range $\lambda < 12.5 \,\mu$ m.

Keywords: layered crystal, GaSe, hydrogenation, IR absorption.

пустотах міжшарового простору, що призводить до деформації кристалічної гратки H_x GaSe. Зміщення смуг поглинання внутрішарових мод в низькочастотну область та збільшення пропускання в області $\lambda < 12,5$ мкм пов'язано з наявністю деформаційного потенціалу в гідрованих кристалах.

Наявність локальної моди з частотою $v = 500 \text{ см}^{-1}$ при 77 К в спектрі гідрованого при 500 °С кристала зумовлена процесом впорядкування водневої підсистеми в кристалічній гратці GaSe.

Боледзюк В.Б. - кандидат фізико-математичних наук, науковий співробітник;

Камінський В.М. - кандидат фізико-математичних наук, науковий співробітник;

Ковалюк З.Д. - доктор фізико-математичних наук, професор;

Склярчук **В.М.** - кандидат фізико-математичних наук, старший науковий співробітник;

Склярчук О.Ф. - кандидат фізико-математичних науковий співробітник.