УДК 546.81'682'47'48'18'22'23

ISSN 1729-4428

М.В. Поторій¹, П.М. Милян², В.В. Товт²

Фізико-хімічна взаємодія в псевдобінарних системах за участю гексахалькогіподифосфатів деяких металів

¹Ужгородський національний університет, хімічний факультет, кафедра неорганічної хімії, 88000, Ужгород, вул. Підгірна, 46;

²НДІ фізики і хімії твердого тіла Ужгородського національного університету, 88000, Ужгород, вул. Підгірна, 46, тел.: (03122) 3-41-57, e-mail: <u>pet-milyan@yandex.ru</u>

Методами рентгенівського фазового та диференціального термічного аналізів досліджено фізикохімічну взаємодію в системах $Sn_2P_2S_6(Se_6)-In_4(P_2S_6(Se_6))_3$, $Sn_2P_2S_6(Se_6)-Cd_2P_2S_6(Se_6)$, $Cd_2P_2S_6-Cd_2P_2Se_6$, $Sn_2(Cd_2)P_2S_6-Zn_2P_2S_6$. Побудовано відповідні діаграми стану. Показано, що тверді розчини на основі $Sn_2P_2S_6(Se_6)$ розширяють діапазон застосування даних матеріалів

Ключові слова: фазова діаграма, рентгенофазовий аналіз, диференційно-термічний аналіз, тверді розчини.

Стаття поступила до редакції 12.08.2012; прийнята до друку 15.12.2012.

Вступ

Останнім часом предметом дослідження багатьох матеріалознавців стали складні халькогеніди, що утворюються в системах Me – P – X, де Me - Cd, Zn, Hg, In, Ga, Sn, Pb, Mn, Ni, Fe, Co; X - S, Se. B ycix утворення зазначених системах встановлено гексахалькогенгіподифосфатів загальної формули $Me_x(P_2S_6)_y$. Існування великого сімейства цього класу сполук з катіонами різного розміру і різної електронної будови є можливим завдяки наявності в них зв'язку [Р-Р], довжина якого змінюється в широких межах. Два атоми фосфору у всіх халькогенгіподифосфатах координовані шістьмома атомами халькогену й утворюють октаедри [Р₂Х₆].

У залежності від радіусу катіону металу халькогенгіподифосфати кристалізуються в різних структурних типах. Для металів з меншими іонними радіусами переважним є структурний тип $Fe_2P_2S_6$ або $Fe_2P_2Se_6$ з октаедричною координацією металу. Сполуки цього структурного типу є шаруватими, і можуть виступати як матриці в реакціях інтеркаляції.

Для частини металів (Sn, Pb) характерне утворення халькогенгіподифосфатів, структура яких не є шаруватою, а координаційне число металу дорівнює восьми. Кристали-сегнетоелектрики Sn₂P₂S₆, Sn₂P₂Se₆, а також тверді розчини в них свинцю, є перспективними для практичного використання як робочі середовища в теплових і акустичних приймачах [1].

Дослідження твердих розчинів на основі вищевказаних сполук розширяють діапазон застосування даних матеріалів. У той же час, у літературі практично відсутні повідомлення про вивчення фізико-хімічної взаємодії у псевдобінарних системах за участю тіо(селено)гіподифосфатів, за винятком систем $Sn_2P_2S_6(Se_6)-Pb_2P_2S_6(Se_6)$ [2]. А в роботі [3] приведені результати рентгенофазового дослідження систем $Zn_2P_2S_6-Ni_2P_2S_6$ і $Zn_2P_2S_6-Fe_2P_2S_6$.

Виходячи з вищесказаного, дослідження фізикохімічної взаємодії у псевдобінарних системах за участю халькогенгіподифосфатів є актуальним.

Раніше були досліджені потрійні системи Sn(In, Zn, Cd)–P–S(Se), встановлений характер утворення гексахалькогенгіподифосфатів відповідних металів, розшифровані або уточнені кристалічні структури деяких з них [4-8]. У даній роботі повідомляється про дослідження фізико-хімічної взаємодії в системах $Sn_2P_2S_6(Se_6)-In_4(P_2S_6(Se_6))_3$, $Sn_2P_2S_6(Se_6)$ – $Cd_2P_2S_6(Se_6), Cd_2P_2S_6-Cd_2P_2Se_6, Sn_2(Cd_2)P_2S_6-Zn_2P_2S_6.$

I. Експериментальна частина

Для синтезу сплавів використовували елементарні компоненти. З огляду на характер реакцій між компонентами, що відбуваються з інтенсивним виділенням теплоти і сильним зростанням тиску в ампулі, приймалися міри для запобігання розгерметизації ампул. Для одержання зразків використовували метод двотемпературного синтезу, із градієнтом температури 50 К. У якості мінералізуючої домішки вносили невеликі кількості (3-5 мг/см³) йоду. Ампули з шихтою повільно нагрівали з тривалими витримками при критичних температурах компонентів. З метою забезпечення повної взаємодії компонентів синтезований продукт кілька разів переганяли з одного в інший кінець ампули, змінюючи градієнт температури на зворотний. Відпал синтезованих сплавів проводили при 673 – 723 К на протязі 300 годин. Фазовий склад отриманих сплавів досліджували методами диференційно-термічного (HTP-62M) та рентгенофазового (ДРОН-3) аналізів.

II. Результати та їх обговорення

Вищевказані системи по типах заміщення можна розділити на три групи:

– гомозарядне катіонне заміщення $(Sn_2P_2S_6 - Cd_2P_2S_6, Sn_2P_2S_6 - Cd_2P_2S_6, Sn_2P_2S_6 - Zn_2P_2S_6, Cd_2P_2S_6 - Zn_2P_2S_6);$

– гетерозарядне катіонне заміщення $(Sn_2P_2S_6-In_4(P_2S_6)_3, Sn_2P_2Se_6-In_4(P_2Se_6)_3);$

– гомозарядне аніонне заміщення ($Cd_2P_2S_6$ – $Cd_2P_2Se_6$).

На рис. 1 приведена діаграма фазових рівноваг у системі Sn₂P₂S₆-Cd₂P₂S₆. Вона характеризується типом взаємодії обмеженим евтектичним 3 Ϊï розчиненням вихідних сполук. часткова інконгруентним квазібінарність обумовлена характером утворення $Cd_2P_2S_6$. Температура евтектичного перетворення складає 1003±5 К, склад точки евтектики 30 мол. % Cd₂P₂S₆. За даними РФА область існування α-твердого розчину на основі $Cd_{2}P_{2}S_{6}$ не перевищує 10 мол. % та β - твердого розчину на основі β -Sn₂P₂S₆ 10 мол. %.

Діаграма стану системи Sn₂P₂Se₆-Cd₂P₂Se₆ приведена на рис. 2. Як видно з рисунку, вона також евтектичного типу з обмеженою розчинністю компонентів. Евтектична точка зміщена в сторону $Sn_2P_2Se_6$ і має координати: 928 ± 5 К і 15 мол. % $Cd_2P_2Se_6$. Розчинність $Cd_2P_2Se_6$ у $Sn_2P_2Se_6$ за результатами рентгенофазового аналізу не перевищує 5 мол. %, же той час у гіпоселенодифосфат кадмію розчиняє до 45 мол. % Sn₂P₂Se₆.

Фізико-хімічна взаємодія в системі $Sn_2P_2S_6$ -Zn₂P₂S₆ (рис.3) подібна до взаємодії у вищенаведених системах. Координати евтектичної точки: 928 К і 15 мол. % Zn₂P₂S₆. Розчинність Zn₂P₂S₆ у Sn₂P₂S₆ не перевищує 10 мол. %, у той час як гіпотіодифосфат цинку розчиняє до 5 мол. % Sn₂P₂S₆.

Евтектична взаємодія в системах $Sn_2P_2S_6$ -Cd₂P₂S₆, $Sn_2P_2Se_6$ -Cd₂P₂Se₆, $Sn_2P_2S_6$ -Zn₂P₂S₆ у першу чергу викликана істотною відмінністю кристалічних структур компонентів. Для кадмію і цинку переважною є октаедрична координація атомами халькогену. В той же час олово в структурах $Sn_2P_2S_6$ і $Sn_2P_2Se_6$ координовано вісьмома атомами халькогену, що є наслідком наявності неподіленої електронної пари в олова в стані Sn^{2+} і нестійкості структури з октаедричною координацією. Даний

Рис. 1. Діаграма стану системи $Sn_2P_2S_6$ -Cd₂P₂S₆.

Рис. 2. Діаграма стану системи $Sn_2P_2Se_6$ - $Cd_2P_2Se_6$.

висновок підтверджується існуванням для олова в стані Sn^{4+} сполуки SnP_2S_6 зі структурою, характерною для шаруватих халькогенгіподифосфатів. Дана відмінність у будові електронних оболонок олова і кадмію призводить до того, що, незважаючи на дуже близькі значення іонних радіусів, області гомогенності твердих розчинів заміщення на основі сполук олова не перевищують 10 мол. %.

Система $Cd_2P_2S_6$ – $Zn_2P_2S_6$ (рис. 4) належить до систем з необмеженою розчинністю компонентів, як у рідкому, так і у твердому стані. Необмежена розчинність у системі $Cd_2P_2S_6$ – $Zn_2P_2S_6$ є наслідком ізоструктурності тіогіподифосфатів кадмію і цинку. Хоча розходження в катіонних радіусах досить істотне: $r_{Cd}/r_{Zn} = 1,19$ (по Бокію-Белову в октаедричному оточенні). Очевидно, розмірний

Рис. 3. Діаграма стану системи $Sn_2P_2S_6$ - $Zn_2P_2S_6$.

Рис. 4. Діаграма стану системи $Cd_2P_2S_6$ - $Zn_2P_2S_6$.

фактор у даному випадку не є визначальним. Основним критерієм утворення НРТР у даній системі варто вважати структурно-термодинамічний фактор [9], відповідно до якого визначальною є близькість електронної будови електронних оболонок кадмію і цинку. Разом з тим, з аналізу кристалічної структури $Cd_2P_2S_6$ і $Zn_2P_2S_6$ випливає, що катіони кадмію і цинку мають досить великі значення еквівалентних термічних факторів, що, як відомо, є мірою локального теплового руху іонів і характеризирує легкість протікання обмінних реакцій між вихідними сполуками.

Діаграми стану систем $Sn_2P_2S_6$ — $In_4(P_2S_6)_3$ і $Sn_2P_2Se_6$ — $In_4(P_2Se_6)_3$ приведені на рис. 5, 6. Система $Sn_2P_2S_6$ — $In_4(P_2S_6)_3$ евтектичного типу з обмеженою розчинністю компонентів. Координати евтектичної точки: 1005±2 K, 6 мол. % $In_4(P_2S_6)_3$. Розчинність $In_4(P_2S_6)_3$ у $Sn_2P_2S_6$ не перевищує 3 мол. %, у той же час тіогіподифосфат індію розчиняє до 20 мол. % $Sn_2P_2S_6$.

У системі $Sn_2P_2Se_6-In_4(P_2Se_6)_3$ методом ДТА зафіксоване утворення сполуки $Sn_{1.6}In_{0.27}P_2Se_6$, що існує в інтервалі температур 848 – 906 К. Із селеногіподифосфатом індію дана сполука утворює евтектику при 858 К. Розчинність $In_4(P_2Se_6)_3$ у

Рис. 5. Діаграма стану системи $Sn_2P_2S_6$ - $In_4(P_2S_6)_3$.

Рис. 6. Діаграма стану системи $Sn_2P_2Se_6-In_4(P_2Se_6)_3$.

 $Sn_2P_2Se_6$ за результатами рентгенофазового аналізу не перевищує 1,7 мол. %, у той же час похідне індію розчиняє до 20 мол. % $Sn_2P_2Se_6$.

системах $Sn_2P_2S_6-In_4(P_2S_6)_3$ і $Sn_2P_2Se_6-In_4(P_2S_6)_3$ V $In_4(P_2Se_6)_3$ на основі вихідних сполук реалізується тип твердого розчину заміщення з відніманням. Один іон олова Sn^{2+} заміщується на $2/3 \text{In}^{3+} + 1/3$, де металу. вакансія Структура тіо(селено)гіподифосфату індію подібна ДО структури сполук кадмію, де третина октаедричних пустот, зайнятих атомами кадмію, у In₄(P₂S₆)₃ і In₄(P₂Se₆)₃ залишається вакантною, виходячи з вимог електронейтральності. Формули граничних складів твердих розчинів на основі похідних олова й індію можна записати: $Sn_{1.94}In_{0.04}$ 0.02 P_2S_6 i $Sn_{1.966}In_{0.023}$ 0.011 P_2Se_6

Значна кількість вакансій у катіонній підгратці сполук олова при заміщенні індієм сильно дестабілізує структуру, що виявляється в дуже вузьких областях гомогенності на їхній основі. З іншого боку, заміщення індію на олово відбувається

Рис. 7. Діаграма стану системи $Cd_2P_2S_6-Cd_2P_2Se_6$.

значно легше завдяки наявності в структурі халькогенфосфатів індію вакансій і деформація координаційних поліедрів не настільки велика, що знаходить своє відображення в більш протяжних областях твердих розчинів.

Взаємодія в системі Cd₂P₂S₆-Cd₂P₂Se₆ (рис. 7) перитектичного типу. Координати точки перитектики: 1088 ± 5 К і 10 мол. % Сd₂P₂Se₆. При температурі відпалу Cd₂P₂S₆ розчиняє до 70 мол. % $Cd_2P_2Se_6$, тоді як розчинність $Cd_2P_2S_6$ у $Cd_2P_2Se_6$ не перевищує 10 мол. %. Таку взаємодію в цій системі можна пояснити відмінністю у структурах тіо- і селенопохідних. Відомо, що при переході від сірки до селену збільшується поляризуємість іонів. У зв'язку з цим, ступінь іонності зв'язків зменшується в тому ж напрямку, що, відповідно, приводить до зменшення температури плавлення сполук. Невелике величинах розходження V іонних радіусів халькогенів призводить до утворення широких областей тверлих розчинів. Розрив взаємної розчинності компонентів визначається різною кристалічною структурою сполук.

- Ю.М. Высочанский, В.Ю. Сливка. Сегнетоэлектрики семейства Sn₂P₂S₆. Свойства в окрестности точки Лифиица. Львов. 264 с. (1994).
- [2] М.В. Поторий, Л.А. Сейковская, Ю.В. Ворошилов. Тройная взаимная система Sn, Pb || P₂S₆, P₂Se₆ // Изв. высших учебн. завед. Сер. "Химия и химическая технология", **31**(8), сс. 21-24 (1988).
- [3] R. Brec. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS₃ // *Solid State Ionics*, **22**(1), pp. 3-30 (1986).
- [4] Ю.В. Ворошилов, М.В. Поторий, Л.А. Сейковская, И.П. Приц Кристаллическая структура Sn₂P₂Se₆ и его аналогов. Ужгород. ун-т. Ужгород. Деп. в УкрНИИНТИ. № 256-Ук-88. 12 с. (1988).
- [5] И.П. Приц. Взаимодействие в системах (Sn, Pb)-Р-халькоген. Дисс. канд. хим. наук, Киев. 141с. (1989).
- [6] В.Ю. Гебеш, М.В. Поторий, Ю.В. Ворошилов. Фазовые равновесия в системе In-P-S //УХЖ, 57(8), сс. 803-805 (1991).
- [7] Ю.В. Ворошилов, В.Ю. Гебеш, М.В. Поторий. Фазовые равновесия в системе In-P-Se и кристаллическая структура β-In₄(P₂Se₆)₃ // *Неорган. материалы*, **27**(12), сс. 2495-2498 (1991).
- [8] В.В. Товт, М.В. Поторий, Ю.В. Ворошилов. Физико-химическое исследование систем Cd-P-S(Se) // Неорган. материалы, 35(11), сс. 1108-1112 (1999).
- [9] Б.Ф. Ормонт. Введение в физическую химию и кристаллохимию полупроводников. Высшая школа, М. 528 с. (1975).

M.V. Potoriy¹, P.M. Milyan², V.V. Tovt²

Physico-Chemical Interaction In Pseudobinary Systems of Hexachalcohypodiphosphates of Some Metals

¹Uzhhorod National University, Department of Chemistry, Uzhgorod, Ukraine ²SRS Physics and Chemistry of Solids, Uzhgorod National University, Uzhgorod, Ukraine

Keywords: phase diagrams, X-ray phase analysis, differential thermal analysis, solid solutions.