УДК 546.87'42'41'56

ISSN 1729-4428

Д.Д. Наумова, І.О. Корбут, Т.А. Войтенко, С.А. Неділько Гетеровалентне заміщення кераміки Bi2212

Київський національний університет імені Тараса Шевченка, хімічний факультет, вул. Володимирська, 60, 01601 ДСП, Київ, Україна voitana@ukr.net

Твердофазним методом з попереднім одержанням прекурсору синтезовано керамічні матеріали складу Bi₂Sr_{2-x}Ln_xCaCu₂O_{8+ δ}, Bi₂Sr_{2-x}Ln_xCa_{1-x}Ln_xCu₂O_{8+ δ}, Bi₂Sr₂Ca_{1-x}Ln_xCu₂O_{8+ δ}, де Ln – La, Nd, Eu, Gd, Ho, Er, Lu. Досліджено область гомогенності, структурні та електрофізичні характеристики, кисневу стехіометрію систем від ступеня заміщення *x* та температури переходу у надпровідний стан T_c. Показано, що зміна величини кисневого індексу не призводить до зміни структури кристалічної гратки і практично не змінює критичну температуру.

Ключові слова: високотемпературна надпровідність, Ві-вмісна кераміка, киснева стехіометрія

Стаття поступила до редакції 15.10.2011; прийнята до друку 15.12.2011.

Вступ

Купрати на основі бісмуту є одним з найбільш перспективних високотемпературних надпровідників (ВТНП), що знайшла вже своє застосування, зокрема у мікроелектроніці, медицині та техніці [1-2].

Особливості кристалічної будови сполук складу вивчити Bi2212 лають можливість вплив різноманітних факторів на властивості даних сполук шляхом варіювання катіонного складу, зокрема, заміщення Ca/Ln, Sr/Ln тощо [3]. Це дозволить встановити i вивчити можливий зв'язок надпровідних властивостей, кристалографічних складу i особливостей, хімічного кисневої стехіометрії, що є актуальним для розуміння природи властивостей оптимізації цих сполук, ïx характеристик і фізико-хімічних надпровідних параметрів, важливих, з точки зору практичного застосування ВТНП матеріалів.

Таким чином, мета даної роботи полягала у вивчені заміщень Ca^{2+} на Ln^{3+} , Sr^{2+} на Ln^{3+} та одночасного заміщення Ca^{2+}/Sr^{2+} на Ln^{3+} та вплив таких заміщення на фазовий склад, електрофізичні властивості, кисневу стехіометрію у сполуці складу $Bi_2Sr_2Ca_1Cu_2O_{8+\delta}$.

I. Методика експерименту

Полікристалічні зразки складних купратів бісмуту $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln-La, Nd, Y, Ho, Lu), $Bi_2Sr_{2-x}Ln_xCaCu_2O_{8+\delta}$ (Ln-La, Nd, Ho, Lu) та $Bi_2Sr_{2-x}Ln_xCa_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln-La, Nd, Eu, Gd, Ho, Er, Lu $0 \le x \le 0,1$) синтезували двостадійним методом з

попереднім одержанням прекурсору [4].

Фазовий склад і параметри кристалічних граток визначали рентгенографічним методом на дифрактометрі ДРОН-ЗМ, Си_{ка} випромінювання з Niфільтром.

Залежність електроопору від температури, в інтервалі 300-77 К, вимірювали на установці "АСТС" стандартним чотирьохконтактним методом з нанесенням індій-галієвої евтектики зі швидкістю охолодження 3 К/хв.

Дослідження кисневої стехіометрії проводили титриметричним методом [5]. Похибка визначення при цьому складає 0,02.

II. Результати та їх обговорення

Рентгенографічні дослідження показали, що в системі $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln - La, Nd, Y, Ho, Lu) у випадку Ln-La зі збільшенням ступеня заміщення (x) спостерігається збільшення параметру *a* та незначне зменшення параметру с (табл. 1). Зміна об'єму елементарної комірки ΔV (табл.1) відбувається в межах похибки. Для Ln- Nd, Y, Ho, Lu зі збільшенням ступеня заміщення х параметри а та с зменшуються (табл.), что призводить до зменшення об'єму елементарної комірки (табл.1). Це пов'язано з меншими значеннями йонних радіусів Nd³⁺ (r=1.109 нм), Y^{3+} (r=1.019 нм), Ho³⁺ (r=1.015 нм), Lu³⁺ (r=0.977 нм) порівняно з йонним радіусом Ca²⁺ (r=1,12 нм).

У випадку зразків складу $Bi_2Sr_{2-x}Ln_xCaCu_2O_{8+\delta}$ (Ln - La, Nd, Ho, Lu) спостерігається збільшення параметру *a* і зменшення параметру *c*, для заміщення Ln- La, Ho - параметр *c* зменшується. Одночасно з Гетеровалентне заміщення кераміки Ві2212...

Таблиця 1

Параметри елементарної комірки, температура переходу в надпровідний стан та вміст кисню у зразках BisSr2Ca₁ xLn,Cu₂O₂, Ln-La, Nd, Y, Ho, Lu

$\underline{D}_{2} \underbrace{D}_{2} \underbrace{C}_{1-x} \underbrace{L}_{x} \underbrace{C}_{2} \underbrace{C}_{y}, \underbrace{L}_{1-x} \underbrace{L}_{a}, \operatorname{Nd}, Y, \operatorname{Ho}, \operatorname{Lu}$								
Склад	а, нм	с, нм	V, м ³	У	δ	T_c^{on}		
Bi ₂ Sr ₂ CaCu ₂ O _y	0.3818	3.070(1)	447,5(1)	8,20	0,20	94		
$Bi_2Sr_2Ca_{0.9}La_{0.1}Cu_2O_y$	0.3829(1)	3.080(3)	451,6(2)	8,17	0,12	92		
$Bi_2Sr_2Ca_{0.85}La_{0.15}Cu_2O_y$	0.3832(2)	3.078(2)	451,9(2)	8.18	0.11	92		
$Bi_2Sr_2Ca_{0.9}Nd_{0.1}Cu_2O_y$	0.3825(3)	3.067(3)	448,7(5)	8.16	0.1	92		
$Bi_2Sr_2Ca_{0.85}Nd_{0.15}Cu_2O_y$	0.3825(1)	3.064(1)	448,2(4)	8.18	0.11	92		
$Bi_2Sr_2Ca_{0.8}Nd_{0.2}Cu_2O_y$	0.3825(2)	3.063(4)	448,1(1)	8.18	0.08	91		
$Bi_2Sr_2Ca_{0.9}Y_{0.1}Cu_2O_y$	0.3825(1)	3.063(3)	448,1(3)	8.15	0.1	92		
$Bi_2Sr_2Ca_{0.8}Y_{0.2}Cu_2O_y$	0.3821(1)	3.058(1)	446,4(3)	8.16	0.06	92		
$Bi_2Sr_2Ca_{0.9}Ho_{0.1}Cu_2O_y$	0.3821(3)	3.060(2)	446,7(1)	8.12	0.07	92		
$Bi_2Sr_2Ca_{0.8}Ho_{0.2}Cu_2O_y$	0.3816(1)	3.058(1)	445,3(1)	8.16	0.06	91		
Bi ₂ Sr ₂ Ca _{0.75} Ho _{0.25} Cu ₂ O _y	0.3815(2)	3.046(3)	442,7(2)	8.16	0.04	91		
$Bi_2Sr_2Ca_{0.9}Lu_{0.1}Cu_2O_y$	0.3818(2)	3.057(1)	445,6(1)	8.12	0.07	92		
$Bi_2Sr_2Ca_{0.8}Lu_{0.2}Cu_2O_y$	0.3816(1)	3.047(2)	443,7(4)	8.15	0.05	91		
$Bi_2Sr_2Ca_{0.7}Lu_{0.3}Cu_2O_y$	0.3814(1)	3.039(3)	442,1(3)	8.16	0.1	90		

Таблиця 2

Параметри елементарної комірки, температура переходу в надпровідний стан та вміст кисню у зразках Bi_2Sr_2 . $_xLn_xCa_1Cu_2O_y$ Ln-La, Nd, Eu, Ho, Gd, Er, Lu

Силод		C m	$V m^3$	••	2	T on
Склад	а, нм	С, нм	v , нм	у	0	I _c
$Bi_2Sr_{1.95}La_{0.05}Ca_1Cu_2O_y$	0,383(2)	3,100(1)	453,5(3)	8,15	0,01	92
$Bi_2Sr_{1.95}Nd_{0.05}Ca_1Cu_2O_y$	0,382(1)	3,085(1)	449,7(2)	8,13	0,01	92
$Bi_2Sr_{1.9}Nd_{0.1}Ca_1Cu_2O_y$	0,385(1)	3,080(1)	456,8(3)	8,18	0,03	91
$Bi_2Sr_{2-x}Eu_{0.05}CaCu_2O_y$	0,385(1)	3,067(5)	454(3)	8,14	0,01	92
$Bi_2Sr_{2-x}Eu_xCaCu_2O_y$	0,385(1)	3,065(4)	454(3)	8,15	0,01	91
$Bi_2Sr_{1.95}Ho_{0.05}Ca_1Cu_2O_y$	0,383(1)	3,083(1)	451,1(2)	8,14	0,016	92
$Bi_2Sr_{1.9}Ho_{0.1}Ca_1Cu_2O_y$	0,385(3)	3,074(1)	456,3(3)	8,16	0,012	92
$Bi_2Sr_{1.95}Gd_{0.05}CaCu_2O_y$	0,384(1)	3,059(4)	451(3)	8,14	0,016	92
$Bi_2Sr_{1.9}Gd_{0.1}CaCu_2O_y$	0,385(1)	3,062(5)	454(3)	8,16	0,010	91
$Bi_2Sr_{1.95}Er_{0.05}CaCu_2O_y$	0,383(2)	3,075(1)	450(1)	8,14	0,018	92
$Bi_2Sr_{1.9}Er_{0.1}CaCu_2O_y$	0,383(4)	3,065(1)	450(1)	8,15	0,003	91
$Bi_2Sr_{1.95}Lu_{0.05}Ca_1Cu_2O_y$	0,382(2)	3,081(1)	450(1)	8,15	0,01	91
$Bi_2Sr_{1.9}Lu_{0.1}Ca_1Cu_2O_y$	0,385(3)	3,066(2)	455,2(1)	8,13	0,004	90

цим, відбувається збільшення об'єму елементарної комірки (табл.2).

Для зразків систем $Bi_2Sr_{2-x}Ln_xCa_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln - La, Nd, Eu, Gd, Ho, Er, Lu), у випадку Ln-Nd, Ho, Lu, спостерігається збільшення параметру *a* та зменшення параметру с., Для Ln – La, Eu, Gd, Er спостерігається незначне збільшення параметрів *a* та *c*, а також об'єму елементарної комірки (табл.3).

Рентгенографічні дослідження зразків складу $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln-La, Nd, Y, Ho, Lu) показали, що межі гомогенності зменшуються від Lu³⁺ до La³⁺. Нами очікувалося, що найбільший інтервал меж гомогенності буде характерним саме для Ln-La, що можна було б пояснити різницею в іонних радіусах катіонів кальцію та лантану. Проте результати досліджень показують, що саме в системі Ln-La має найменшу область гомогенності. При одночасному заміщенні кальцію і стронцію на лантаноїди межа гомогенності для Nd, Gd, Er складає x=0,05, а для La, Ho, Eu - x=0,3 (табл.3). У випадку заміщення стронцію на рідкоземельні елементи в системі Ві2212 показано, що зразки із заміщенням більше ніж x=0,1, а у випадку La x=0,2 не є гомогенними (табл.2). На дифрактограмах поряд з

фазою Bi2212 з'являються лінії, що відповідають домішковим фазам Bi-2201, $Ln_xSr_{2-x}CuO_y$, $La_xCa_{2-x}CuO_y$ CaCu₂O₃, CuO.

Вимірювання електричного опору зразків в системах $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln-La, Nd, Y, Ho, Lu), $Bi_2Sr_{2-x}Ln_xCaCu_2O_{8+\delta}$ (Ln-La, Nd, Ho, Lu) та $Bi_2Sr_{2-x}Ln_xCa_{1-x}Ln_xCu_2O_{8+\delta}$ (Ln-La, Nd, Eu, Gd, Ho, Er, Lu) при температурах 77-300 К показали, що для гомогенних зразків (табл.1,2,3) при температурах вище 77 К зразки переходять у надпровідний стан, а у випадку наявності домішкових фаз надпровідного переходу при температурах вище 77 К не спостерігається.

Пригнічення надпровідності у зразках можна пояснити зменшенням концентрації носіїв заряду. В надпровідних сполуках типу Bi-2212 носіями електричного струму є дірки, а при гетеро валентному заміщенні двовалентного кальцію на тривалентний катіон рідкісноземельного елементу, останні поставляють у кристалічну гратку додаткові електрони, внаслідок чого зменшується концентрація носіїв заряду-дірок. Таким чином, температура переходу у надпровідний стан для заміщених зразків

Таблиця 3

Параметри елементарної комірки, температура переходу в надпровідний стан та вміст кисню у зразках	
Bi ₂ Sr _{2-x} Ln _x Ca _{1-x} Ln _x Cu ₂ O _y Ln-La, Nd, Eu, Ho, Gd, Er, Lu	

DI2DI2-xLII	$x Ca_{1-x} Lin_x Cu_2 O_y L$	II-La, ING, Lu,	110, Ou, Li, I	Lu	-	
Склад	а, нм	с, нм	V, нм ³	у	δ	T _c ^{on}
$Bi_2Sr_{1.95}La_{0.05}Ca_{0.95}La_{0.05}Cu_2O_y$	0,383(1)	3,099(7)	449(3)	8,13	0,015	92
$Bi_2Sr_{1.9}La_{0.1}Ca_{0.9}La_{0.1}Cu_2O_y$	0,382(1)	3,081(5)	449(3)	8,17	0,013	92
$Bi_2Sr_{1.95}Nd_{0.05}Ca_{0.95}Nd_{0.05}Cu_2O_y$	0,384(1)	3,074(5)	453(3)	8,20	0,018	92
$Bi_2Sr_{1.9}Nd_{0.1}Ca_{0.9}Nd_{0.1}Cu_2O_y$	0,386(1)	3,068(4)	456(3)	8,18	0,018	91
$Bi_2Sr_{1.95}Eu_{0.05}Ca_{0.95}Eu_{0.05}Cu_2O_y$	0,383(1)	3,088(5)	453(2)	8,20	0,017	92
$Bi_2Sr_{1.9}Eu_{0.1}Ca_{0.9}Eu_{0.1}Cu_2O_y$	0,383(1)	3,095(8)	455(4)	8,18	0,007	92
$Bi_2Sr_{1.95}Gd_{0.05}Ca_{0.95}Gd_{0.05}Cu_2O_y$	0,382(1)	3,084(5)	451(2)	8,17	0,018	92
$Bi_2Sr_{1.9}Gd_{0.1}Ca_{0.9}Gd_{0.1}Cu_2O_y$	0,382(1)	3,085(6)	451(3)	8,11	0,004	91
$Bi_2Sr_{1.95}Ho_{0.05}Ca_{0.95}Ho_{0.05}Cu_2O_y$	0,383(1)	3,084(3)	451(1)	8,14	0,018	91
$Bi_2Sr_{1.9}Ho_{0.1}Ca_{0.9}Ho_{0.1}Cu_2O_y$	0,385(1)	3,075(1)	456(1)	8,13	0,009	92
$Bi_{2}Sr_{1.95}Er_{0.05}Ca_{0.95}Er_{0.05}Cu_{2}O_{y}$	0,383(1)	3,082(4)	451(2)	8,17	0,012	91
$Bi_{2}Sr_{1.9}Er_{0.1}Ca_{0.9}Er_{0.1}Cu_{2}O_{y}$	0,382(1)	3,089(9)	452(5)	8,14	0,007	90
$Bi_{2}Sr_{1.95}Lu_{0.05}Ca_{0.95}Lu_{0.05}Cu_{2}O_{y}$	0,382(1)	3,083(5)	450(2)	8,15	0,016	92
$Bi_{2}Sr_{1.9}Lu_{0.1}Ca_{0.9}Lu_{0.1}Cu_{2}O_{y}$	0,385(1)	3,066(3)	455(2)	8,11	0,014	92

знижується, в порівнянні з чистою Ві2212 фазою.

Аналізуючи дані електрофізичних вимірювань (табл. 1,2,3), можна говорити про існування зв'язку між ступенем заміщення x та критичною температурою T_c .

Для дослідження зв'язку між вмістом кисню та ступенем заміщення х було визначено загальний вміст кисню (8+ δ) і вміст мобільного кисню (д) в зразках Bi₂Sr_{2-x}Ln_xCaCu₂O_y (де La, Nd, Eu, Gd, Ho, Er, Lu 0 $\leq x \leq 0,1$) та Bi₂Sr_{2-x}Ln_xCa_{1-x}Ln_xCu₂O_y (Ln-La, Nd, Eu, Gd, Ho, Er, Lu 0 $\leq x \leq 0,1$). Як відомо, загальний вміст кисню *у* складається із оксидного і мобільного кисню (∂), наявність якого обумовлено присутністю міді зі ступенем окиснення +3 та бісмуту зі ступенем заміщення +5.

Проведені дослідження показали, що для гомогенних зразків при збільшенні x зростає загальний вміст кисню (y) в порівнянні з чистою Ві-2212 фазою (табл. 1,2,3). Це збільшення можна пояснити заміною катіона двовалентного стронцію на катіон тривалентного рідкісноземельного елементу. З літературних даних [6] відомо, що входження надстехіометричного атома кисню в площину (Са) малоймовірно через виникаючі аномально короткі відстані Сu-O.

Дослідження показали, що при заміщенні двовалентного катіону Sr^{2+} на тривалентний катіон рідкісноземельного елементу Ln^{3+} вміст активного

кисню знаходиться у межах похибки, тобто залежність ∂ від ступеня заміщення *x* має ідентичний характер із залежністю загальний вміст кисню від ступеня заміщення *x*. Аналогічна ситуація відбувається і у випадку одночасного заміщення Sr²⁺ та Ca²⁺ на Ln³⁺ Отже, зміна величини кисневого індексу практично не впливає на структуру кристалічної гратки. Величина кисневого індексу змінюється відповідно до зміни іонного радіуса катіону рідкісноземельного елементу.

Висновки

Встановлено, що для системи Ві 2212 при частковому заміщені кальцію на лантаноїди, стронцію на лантаноїди та стронцій – кальцій на лантаноїди, область гомогенності, параметри елементарної комірки та величина кисневого індексу змінюються відповідно до зміни іонного радіусу заміщуючого атома.

Аналізуючи зміну параметрів кристалічної решітки у вивчених бісмутвмісних системах з гетеровалентними заміщеннями, а також враховуючи іонні радіуси Ln (r=1,16Å), Bi (r=1.03Å), Sr (r=1.31Å), та Ca (r=1.12Å). Можна припустити, що іони La³⁺ та Nd³⁺ входять в позиції Sr²⁺. А інші Ln, які мають менші іонні радіуси, входять в позицію Ca²⁺.

Показано, що одночасне заміщення стронцію та

кальцію на лантаноїди суттєво не змінює структурні та електрофізичні характеристики, але дає змогу зрозуміти характер поведінки лантаноїдів, тобто їх ймовірне знаходження у структурі системи. *Наумова Д.Д.* – к.х.н., м.н.с. кафедри неорганічної хімії

Корбут І.О. – аспірант кафедри неорганічної хімії; *Войтенко Т.А.* – к.х.н., н.с. кафедри неорганічної хімії;

Неділько С.А. – д.х.н., професор кафедри неорганічної хімії.

- [1] Ju.D. Tret'jakov, E.A. Gudilin. Uspehi himii 69(1), 1 (2000).
- [2] V.S. Kruglov. Sverhprovodniki dlja jelektrojenergetiki t. 6, vyp. 2. (RNC «Kurchatovskij institut», Moskva, 2009).
- [3] Ju.D. Treť jakov, E.A. Gudilin, D.V. Peryshkov, D.M. Itkis. Uspehi Himii 73(9), 954 (2004).
- [4] T.A. Vojtenko, S.A. Nedil'ko. Ukrainskij himicheskij zhurnal 8, 80 (2007).
- [5] N.F. Zaharchuk, T.P. Fedina, N.S. Borisova. Sverhprovodimost': fizika, himija, tehnika 4(7), 1391 (1991).
- [6] P. Krishnaraj, M. Lelovic, U. Balachandran. Physica C. 246, 271 (1995).

D.D. Naumova, I.O. Korbut, T.A. Voitenko, S.A. Nedilko

Heterovalent Substitution of Ceramics Bi2212

Kiev Taras Shevchenko National University, chemical department, Volodymyrska str., 60, 01601 Kyiv, Ukraine, <u>voitana@ukr.net</u>

The samples $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_{8+\delta}$, $Bi_2Sr_{2-x}Ln_xCaCu_2O_{8+\delta}$, $Bi_2Sr_{2-x}Ln_xCa_{1-x}Ln_xCu_2O_{8+\delta}$, de Ln - La, Nd, Eu, Gd, Ho, Er, Lu. were synthesized using the ceramic technique with precursor. For Bi2212 homogeneity region, structural parameters, electrophysical properties, oxygen stoichiometry depend on their composition (*x*) and T_c^{on} value was study. Shown, that the value of T_c^{on} does not depend on the value of oxygen index δ .

Keywords: high-temperature superconductivity, Bi-contaning ceramic, oxygen stoichiometry.