УДК 546:548.736.5

ISSN 1729-4428

Р.С. Козак, Р.Є. Гладишевський Система Sm-Ag-Al-Ge (0,333 ат. частки Sm)

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: <u>r-kozak@ukr.net</u>

Ha основі рентгенівських порошкових дифракційних даних у системі Sm-Ag-Al-Ge на ізоконцентраційному перерізі 0,333 ат. частки Sm встановлено фазові рівноваги при 873 К. Виявлено існування тетрарної фази змінного складу $SmAg_{0,55,0,36}Al_{0,43,0,80}Ge_{1,02-0,84}$ із структурою типу AlB₂ та обмежених твердих розчинів на основі тернарних сполук $SmAg_{1,40-0,98}Ge_{0,60-1,02}$ та $SmAl_{1,22-0,95}Ge_{0,78-1,05}$ із структурами типів Fe₂P та α-ThSi₂, відповідно. В межах області гомогенності тетрарної фази із структурою типу AlB₂ та твердого розчину на основі сполуки зі структурою типу α-ThSi₂ значення співвідношення висота/основа тригональних призм Sm₆ менше від 1 (призми сплющені) та зростає зі збільшенням концентрації валентних електронів на один атом статистичної суміші M = Ag+Al+Ge, розташованої в центрах призм. Значення співвідношення висота/основа тригональних призм Sm₆ в межах твердого розчину на основі сполуки із структурою типу Fe₂P більше від 1 та зростає при збільшенні вмісту Al та зменшенні вмісту Ge (або Ag) та сталому вмісті Ag (або Ge).

Ключові слова: самарій, аргентум, алюміній, германій, рентгенівський метод порошку, твердий розчин, тетрарна сполука, кристалічна структура.

Стаття поступила до редакції 17.02.2010; прийнята до друку 15.09.2010.

Вступ

Одним із напрямків досліджень з метою синтезу нових сполук є вивчення взаємодії металів у багатокомпонентних системах: встановлення фазових рівноваг, визначення кристалічної структури фаз. Завданням нашої роботи було встановлення фазових рівноваг у чотирикомпонентній системі Sm-Ag-Al-Ge на перерізі SmAg₂-SmAl₂-SmGe₂ при 873 К. У цій системі нами раніше виявлено існування тетрарної сполуки змінного складу SmAg_{0,55-0,36}Al_{0,43-0,80}Ge_{1,02-0,84} із гексагональною структурою типу AlB₂ (символ Пірсона *hP*3, просторова група *P6/mmm*, параметри елементарної комірки a = 0,42756(3), c = 0,41030(4)нм для складу SmAg_{0,42}Al_{0,70}Ge_{0,88}) [1].

Чотирикомпонентну систему Sm-Ag-Al-Ge обмежують потрійні системи Sm-Ag-Al [2], Sm-Ag-Ge [3] i Sm-Al-Ge [4]. На перетині SmAg₂-SmAl₂ реалізується одна з шести відомих тернарних сполук у системі Sm-Ag-Al (873 K), а саме SmAg_{1.72-1.42}Al_{0.28-} 0.58 (структурний тип КНg₂, просторова група *Imma*). На основі диалюмініду самарію утворюється твердий розчин заміщення, який простягається до вмісту Ад ~ 0,39 ат. частки. Фазові рівноваги в системі Sm-Ag-Ge ще не досліджені. Однак, в цій системі при 873 К та вмісті 0,333 ат. частки Sm відома сполука SmAg_{1,4}Ge_{0,6} (Fe₂P, *P*-62*m*) [5]. При температурі 973 К та еквіатомному складі в результаті впорядкування атомів малого розміру реалізується структурний тип ZrNiAl (надструктура до типу Fe₂P, *P*-62*m*) [6]. Найбільша кількість сполук (10) утворюється в системі Sm-Al-Ge (873 K). Три з них існують на ізоконцентраті ~ 0,33 ат. частки Sm: SmAl_{1.22-0.95}Ge_{0.78-} 1,05 (α-ThSi₂, *I*4₁/amd), Sm₂AlGe₃ (Y₂AlGe₃, *Pnma*) та SmAl_{0.15}Ge_{1.76} (PrGe_{1.91}, *Cmmm*). В межах області гомогенності першої сполуки при однаковому вмісті трьох компонентів реалізується структура типу LaPtSi (надструктура до типу α -ThSi₂, *I*4₁*md*). При вищій температурі, 1273 К, знайдена ще одна P6/mmm). сполука: SmAl_{1.5}Ge_{0.5} $(AlB_2,$ Кристалографічні характеристики сполук, ЯК1 відомі в потрійних системах, наведено в табл. 1.

I. Методика експерименту

У чотирикомпонентній системі Sm-Ag-Al-Ge методом електродугової плавки полікристалічних металів високої чистоти $(Sm \ge 99,83\%)$ Al ≥ 99,985 %, Ag та Ge ≥ 99,999 %) в атмосфері аргону під тиском 50 кПа нами синтезовано 58 сплавів вмістом Sm 0,333 ат. частки. i3 Гомогенізуючий відпал зразків проводився при температурі 873 К в евакуйованих кварцових ампулах у муфельній печі Vulcan А-550 з автоматичним регулюванням температури ± 1 – 2 К

Таблиця 1

Сполука	Структурний	Символ	Просторова	Параметри комірки, нм		
	тип	Пірсона	група	а	b	С
Sm _{1,6} Ag _{9,4-6,5} Al _{7,6-10,5}	Th_2Ni_{17}	hP38	$P6_3/mmc$	0,9318	_	0,9119
$(Sm_{1,6}Ag_{7,5}Al_{9,5})$						
Sm ₂ Ag _{11,4-9,5} Al _{5,6-7,5}	Th_2Zn_{17}	hR57	<i>R</i> -3 <i>m</i>	0,9370	_	1,3641
$(Sm_2Ag_{10,9}Al_{6,1})$						
SmAg _{3,65} Al _{1,35}	SmAg _{3,65} Al _{1,35}	hP12	<i>P</i> -62 <i>m</i>	0,54081	-	0,92583
SmAg _{2,0-2,6} Al _{3,0-2,4}	DyAg _{2,4} Al _{2,6}	hP42	$P6_3/mmc$	0,92272	_	0,94821
$(SmAg_{2,6}Al_{2,5})$						
SmAg _{1,15} Al _{1,85}	PuNi ₃	hR36	<i>R</i> -3 <i>m</i>	0,55903	_	2,6560
SmAg _{1,72-1,42} Al _{0,28-0,58}	KHg ₂	<i>oI</i> 12	Imma	0,4656	0,7237	0,7951
$(SmAg_{1,5}Al_{0,5})$						
$SmAg_2Ge_2$	CeAl ₂ Ga ₂	<i>tI</i> 10	I4/mmm	0,4223	_	1,1048
Sm_2AgGe_6	Ce ₂ CuGe ₆	oS18	Amm2	0,42394	0,40956	2,1346
$Sm_3Ag_4Ge_4$	Gd ₃ Cu ₄ Ge ₄	oI22	Immm	0,4375	0,7096	1,4589
$SmAg_{1,4}Ge_{0,6}$	Fe ₂ P	hP9	P-62m	0,7274	_	0,4239
SmAgGe*	ZrNiAl	hP9	<i>P</i> -62 <i>m</i>	0,72005	-	0,42692
SmAl ₂ Ge ₂	CaAl ₂ Si ₂	hP5	<i>P</i> -3 <i>m</i> 1	0,4233	-	0,6805
$Sm_2Al_3Ge_4$	Hf ₂ Ni ₃ Si ₄	oS36	Стса	0,6007	1,4921	0,782
$Sm_2Al_{1,6}Ge_{5,4}$	La ₂ AlGe ₆	mS36	C2/m	0,8105	0,8458	1,0613
					$\beta = 101,00^{\circ}$	
$SmAl_{1,5}Ge_{0,5}*$	AlB ₂	hP3	P6/mmm	0,4277	_	0,4132
SmAl _{1,22-0,95} Ge _{0,78-1,05}	α -ThSi ₂	<i>tI</i> 12	$I4_1/amd$	0,42033-	_	1,4652-
				0,41892		1,4556
SmAlGe	LaPtSi	<i>tI</i> 12	$I4_1md$	0,41934	-	1,45571
Sm ₂ AlGe ₃	Y ₂ AlGe ₃	oP24	Pnma	0,68152	0,42723	1,7949
SmAl _{0,15} Ge _{1,76}	$PrGe_{1,91}$	oS36	Cmmm	0,4192	3,0227	0,4082
$SmAl_{0,15}Ge_{1,56}$	α -GdSi ₂	oI12	Imma	0,41355	0,41734	1,40026
Sm ₄ Al ₃ Ge ₃	Pr ₄ Al ₃ Ge ₃	oS20	Cmcm	0,40988	2,5899	0,43036
Sm ₁₁ Al ₂ Ge ₈	Sc ₁₁ Al ₂ Ge ₈	<i>tI</i> 84	I4/mmm	1,1098	_	1,6788
$Sm_3Al_{0,5}Ge_{0,5}$	Cu ₃ Au	cP4	Pm-3m	0,4855	-	-

Кристалографічні характеристики сполук систем Sm-Ag-Al, Sm-Ag-Ge та Sm-Al-Ge

* сполука не існує при 873 К.

впродовж 720 год. Відпалені сплави гартували в холодній воді без попереднього розбивання ампул. Масиви рентгенівських дифракційних даних одержано на порошковому дифрактометрі ДРОН-2.0М (проміння Fe Ka). Уточнення профільних і структурних параметрів здійснено методом Рітвельда за допомогою програми DBWS-9807 [7]. Фазовий склад синтезованих сплавів і визначені параметри елементарних комірок для індивідуальних фаз наведено в таблиці 2.

II. Результати експерименту та їх обговорення

На основі рентгенофазового аналізу трикомпонентних сплавів підтверджено існування при 873 К тернарних сполук $SmAg_{1,72-1,42}Al_{0,28-0,58}$, $Sm_3Ag_4Ge_4$, $SmAg_{1,4}Ge_{0,6}$, $SmAl_{0,15}Ge_{1,76}$, $SmAl_{1,22-0,95}Ge_{0,78-1,05}$ і твердих розчинів на основі бінарних сполук $Sm_{14}Ag_{51}$ (структурний тип $Gd_{14}Ag_{51}$, просторова група P6/m), $SmAl_2$ (MgCu₂, Fd-3m), $SmGe_{2-x}$ (x = 0 - 0,37, α -ThSi₂, $I4_1/amd$). Визначені параметри елементарних комірок для цих сполук добре узгоджуються з літературними відомостями. В сплавах \mathbb{N} 1, 6, 7, 12, 13, 19 (див. табл. 2) неідентифікованою фазою ймовірно є SmAg₂ із невідомою структурою.

У потрійній системі Sm-Ag-Ge для сполуки SmAg_{1,4}Ge_{0,6} виявлено існування області гомогенності та встановлено її граничні склади. На рис. 1 зображено залежність параметрів елементарної комірки для SmAg_{1,40-0.98}Ge_{0,60-1.02} від вмісту Ge.

Рис. 1. Параметри елементарної комірки в межах області гомогенності сполуки $SmAg_{1,40-0,98}Ge_{0,60-1,02}$ із структурою типу Fe_2P .

Фазовий склад сплавів системи Sm-Ag-Al-Ge при 873 К

N⁰	Сплав, ат. частки	Фаза*	Структурний		Парамет	ри комірки	
			ТИП	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³
1	2	3	4	5	6	7	8
		II	Fe ₂ P	0,7237(2)	-	0,4249(1)	0,19274(9)
1	Sm _{0,333} Ag _{0,467} Ge _{0,200}	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2724(4)	_	0,9361(4)	1,3124(8)
		Χ					
C	Sm Ag Ga	II	Fe ₂ P	0,7227(1)	—	0,42585(9)	0,19261(6)
Z	SIII _{0,333} Ag _{0,434} Oe _{0,233}	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2727(4)	—	0,9359(5)	1,3129(9)
3	Sm Ag Ga	II	Fe ₂ P	0,72195(8)	—	0,42623(6)	0,19239(4)
	SIII _{0,333} Ag _{0,400} Ge _{0,267}	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2736(5)	—	0,9363(8)	1,315(1)
4	Sm Ag Ga	II	Fe ₂ P	0,72059(5)	—	0,42672(4)	0,19189(2)
4	4 $Sm_{0,333}Ag_{0,334}Ge_{0,333}$	Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4376(1)	0,7086(2)	1,4565(3)	0,4517(2)
		Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,43728(5)	0,70924(7)	1,4566(2)	0,45174(8)
5	Sm _{0,333} Ag _{0,267} Ge _{0,400}	II	Fe ₂ P	0,72022(9)	_	0,42688(9)	0,19176(5)
		SmGe _{2-x}	α -ThSi ₂	0,41344(9)	_	1,3896(4)	0,2375(1)
		SmAg _{1.72-1.42}	KHg ₂	0,4723(2)	0,7031(3)	0,8077(3)	0,2683(2)
6	See An Al Co	Al _{0.28-0.58}					
0	Sm _{0,333} Ag _{0,600} Al _{0,033} Ge _{0,034}	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2724(4)	_	0,9323(4)	1,3072(8)
		X					
		II	Fe ₂ P	0,7248(2)	-	0,4248(1)	0,19327(8)
7	Sm _{0,333} Ag _{0,467} Al _{0,033} Ge _{0,167}	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2726(4)	_	0,9332(3)	1,3089(7)
		X					
0	Sm Ag Al Co	II	Fe ₂ P	0,7231(1)	-	0,42561(8)	0,19270(6)
0	SIII _{0,333} Ag _{0,400} Al _{0,033} Ue _{0,234}	Sm ₁₄ Ag ₅₁	$Gd_{14}Ag_{51}$	1,2714(3)	_	0,9331(4)	1,3063(7)
		II	Fe ₂ P	0,71779(7)	-	0,42822(5)	0,19107(3)
9	Sm _{0,333} Ag _{0,267} Al _{0,033} Ge _{0,367}	Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,43849(9)	0,7058(2)	1,4497(3)	0,4487(2)
		SmGe _{2-x}	α -ThSi ₂	0,41430(8)	-	1,3914(6)	0,2388(1)

1	2	3	4	5	6	7	8
10	See A.a. Al Ca	SmGe _{2-x}	α -ThSi ₂	0,41340(5)	-	1,3920(2)	0,23789(5)
10	$10 Sin_{0,333}Ag_{0,133}Ai_{0,033}Ge_{0,501}$	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,43852(7)	0,7067(1)	1,4508(3)	0,4496(1)
1.1	Suc Al Al C	SmAl _{0,15} Ge _{1,76}	PrGe _{1,91}	0,41923(7)	3,0351(5)	0,40839(7)	0,5196(2)
11	Sm _{0,333} Ag _{0,033} Al _{0,033} Ge _{0,601}	SmGe _{2-x}	α -ThSi ₂	0,41727(5)	-	1,3817(2)	0,24058(6)
		SmAg _{1.72-1.42}	KHg ₂	0,4700(2)	0,7090(3)	0,8027(3)	0,2675(2)
10	See A.a. Al Ca	Al _{0.28-0.58}	-				
12	Sm _{0,333} Ag _{0,534} Al _{0,067} Ge _{0,066}	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2697(4)	_	0,9306(3)	1,2992(7)
		X					
13		II	Fe ₂ P	0,7226(1)	_	0,42667(8)	0,19296(5)
	$Sm_{0,333}Ag_{0,467}Al_{0,033}Ge_{0,167}$	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2708(3)	-	0,9322(5)	1,3039(8)
		X					
14	Sm _{0,333} Ag _{0,334} Al _{0,067} Ge _{0,266}	II	Fe ₂ P	0,71898(6)	-	0,42860(4)	0,19188(3)
15	Sm _{0,333} Ag _{0,300} Al _{0,067} Ge _{0,300}	II	Fe ₂ P	0,7176(1)	-	0,42995(7)	0,19174(5)
		II	Fe ₂ P	0,71755(9)	-	0,42885(7)	0,19122(5)
16	Sm _{0,333} Ag _{0,233} Al _{0,067} Ge _{0,367}	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,43929(7)	0,7056(1)	1,4498(2)	0,4493(1)
		SmGe _{2-x}	α -ThSi ₂	0,41439(8)	-	1,4104(3)	0,24220(9)
		II	Fe ₂ P	0,7178(1)	-	0,42839(9)	0,19114(7)
17	$Sm_{0,333}Ag_{0,20}Al_{0,067}Ge_{0,40}$	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4396(1)	0,7048(2)	1,4496(4)	0,4491(2)
		SmGe _{2-x}	α -ThSi ₂	0,4143(1)	-	1,4120(4)	0,2423(1)
10	Suc Al Al C	SmGe _{2-x}	α -ThSi ₂	0,4166(1)	_	1,4014(4)	0,2433(1)
18	Sm _{0,333} Ag _{0,067} Al _{0,067} Ge _{0,533}	X					
		II	Fe ₂ P	0,7219(1)	_	0,42745(9)	0,19291(7)
19	$Sm_{0,333}Ag_{0,400}Al_{0,100}Ge_{0,167}$	$Sm_{14}Ag_{51}$	$Gd_{14}Ag_{51}$	1,2667(4)	_	0,9344(4)	1,2985(9)
		X					
20	Sm _{0,333} Ag _{0,334} Al _{0,100} Ge _{0,233}	II	Fe ₂ P	0,71870(6)	-	0,42969(4)	0,19221(3)
		I	AlB ₂	0,42860(6)	-	0,4090(7)	0,06507(2)
21	Sm _{0,333} Ag _{0,200} Al _{0,120} Ge _{0,347}	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4427(1)	0,6978(2)	1,4572(4)	0,4501(2)
		II	Fe ₂ P	0,7145(2)	_	0,4322(1)	0,1911(1)

1	2	3	4	5	6	7	8
22	Sm _{0,333} Ag _{0,334} Al _{0,133} Ge _{0,200}	II	Fe ₂ P	0,7185(1)	_	0,43035(8)	0,19239(5)
22	Sm Ag Al Co	II	Fe ₂ P	0,7147(1)	-	0,43313(9)	0,19158(6)
25	SIII _{0,333} Ag _{0,267} AI _{0,133} Ge _{0,267}	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4435(4)	0,6965(8)	1,461(1)	0,4517(8)
		II	Fe ₂ P	0,7167(2)	-	0,4324(2)	0,1923(1)
24	Sm _{0,333} Ag _{0,233} Al _{0,134} Ge _{0,300}	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4421(2)	0,7012(4)	1,4577(7)	0,4519(4)
		I	AlB ₂	0,4292(2)	-	0,4084(2)	0,06515(5)
		I	AlB ₂	0,42801(5)	-	0,40952(6)	0,06497(1)
25	Sm _{0,333} Ag _{0,167} Al _{0,133} Ge _{0,367}	II	Fe ₂ P	0,7184(1)	-	0,4278(1)	0,19121(7)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,43929(7)	0,7050(1)	1,4497(3)	0,4489(1)
26		I	AlB ₂	0,4277(1)	-	0,4094(2)	0,06485(4)
	Sm Ag Al Co	II	Fe ₂ P	0,7171(2)	-	0,4282(2)	0,19067(1)
	5III _{0,333} Ag _{0,133} Al _{0,133} Oe _{0,401}	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4393(1)	0,7058(3)	1,4475(7)	0,4488(3)
		X					
		SmGe _{2-x}	α -ThSi ₂	0,4170(1)	-	1,4120(5)	0,2456(1)
27	Sm _{0,333} Ag _{0,067} Al _{0,133} Ge _{0,467}	III	α -ThSi ₂	0,4200(2)	-	1,4627(9)	0,2580(2)
		X					
		II	Fe ₂ P	0,7182(1)	_	0,43131(9)	0,19265(6)
20		SmAg _{1.72-1.42}	KHg ₂	0,4658(3)	0,7289(5)	0,7883(4)	0,2677(3)
28	Sm _{0,333} Ag _{0,334} Al _{0,167} Ge _{0,166}	Al _{0 28-0 58}					
		Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4456(3)	0,6922(7)	1,444(1)	0,4456(7)
29	$Sm_{0.333}Ag_{0.267}Al_{0.167}Ge_{0.233}$	II	Fe ₂ P	0,71276(6)	_	0,43503(5)	0,19140(3)
		Ι	AlB ₂	0,42856(8)	_	0,4091(1)	0,06507(2)
30	$Sm_{0,333}Ag_{0,200}Al_{0,167}Ge_{0,300}$	II	Fe ₂ P	0,7149(1)	_	0,4330(1)	0,19166(7)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4422(1)	0,6998(3)	1,4565(5)	0,4507(3)
		I	AlB ₂	0,42793(4)	_	0,40949(6)	0,06494(1)
31	$Sm_{0,333}Ag_{0,167}Al_{0,167}Ge_{0,333}$	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4389(1)	0,7048(2)	1,4489(3)	0,4482(2)
1	0,000 00,107 0,000	II	Fe ₂ P	0,7185(1)	-	0,4274(1)	0,19111(7)

1	2	3	4	5	6	7	8
		SmAg _{1,72-1,42}	KHg ₂	0,4649(2)	0,7262(3)	0,7921(3)	0,2674(2)
20	Sm Ag Al Co	Al _{0.28-0.58}					
52	SIII _{0,333} Ag _{0,400} AI _{0,200} Ge _{0,067}	II	Fe ₂ P	0,7213(3)	_	0,4300(2)	0,1938(1)
		X					
		II	Fe ₂ P	0,7190(2)	—	0,4318(1)	0,19333(7)
33	Sm _{0,333} Ag _{0,334} Al _{0,200} Ge _{0,133}	SmAg _{1,72-1,42}	KHg ₂	0,4628(2)	0,7315(3)	0,7890(2)	0,2671(2)
		Al _{0,28-0,58}					
34	Sm _{0,333} Ag _{0,267} Al _{0,200} Ge _{0,200}	II	Fe ₂ P	0,71180(5)	—	0,43634(5)	0,19146(3)
		II	Fe ₂ P	0,7124(1)	—	0,4341(1)	0,19081(7)
35	Sm _{0,333} Ag _{0,200} Al _{0,200} Ge _{0,267}	Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4431(1)	0,6970(3)	1,4596(5)	0,4508(3)
		Ι	AlB ₂	0,4284(1)	—	0,4084(2)	0,06490(4)
36		I	AlB ₂	0,42812(6)	—	0,40893(9)	0,06491(2)
	Sm _{0,333} Ag _{0,160} Al _{0,200} Ge _{0,307}	II	Fe ₂ P	0,7161(1)	_	0,4304(1)	0,19114(6)
		Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4394(1)	0,7042(2)	1,4493(4)	0,4484(2)
		III	α -ThSi ₂	0,41959(6)	—	1,4628(2)	0,25754(6)
37	Sm _{0,333} Ag _{0,067} Al _{0,200} Ge _{0,400}	SmGe _{2-x}	α -ThSi ₂	0,41414(7)	—	1,4135(3)	0,24244(8)
		X					
38	Sm _{0,333} Ag _{0,222} Al _{0,222} Ge _{0,223}	II	Fe ₂ P	0,71107(7)	—	0,43604(6)	0,19093(4)
		II	Fe ₂ P	0,7117(1)	—	0,43466(8)	0,19064(5)
39	Sm _{0,333} Ag _{0,167} Al _{0,233} Ge _{0,267}	I	AlB ₂	0,42772(6)	_	0,41023(9)	0,06499(2)
		Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4441(1)	0,6952(2)	1,4612(4)	0,4512(2)
		I	AlB ₂	0,42755(4)	—	0,41027(5)	0,06495(1)
40	Sm _{0,333} Ag _{0,140} Al _{0,233} Ge _{0,294}	II	Fe ₂ P	0,7116(1)	—	0,4344(1)	0,19052(6)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4442(2)	0,6951(3)	1,4603(6)	0,4509(3)
		III	α-ThSi ₂	0,42037(3)	-	1,4674(1)	0,25931(4)
41	Sm _{0,333} Ag _{0,100} Al _{0,233} Ge _{0,334}	I	AlB ₂	0,42835(3)	—	0,40959(4)	0,06508(1)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,43935(9)	0,7051(2)	1,4510(3)	0,4495(2)

1	2	3	4	5	6	7	8
		III	α -ThSi ₂	0,41979(3)	-	1,4633(1)	0,25787(4)
42	Sm _{0,333} Ag _{0,067} Al _{0,233} Ge _{0,367}	SmGe _{2-x}	α -ThSi ₂	0,41391(7)	_	1,4160(3)	0,24259(8)
	, _, , , ,	X					
		Ι	AlB ₂	0,42676(5)	_	0,41233(6)	0,06503(1)
43	Sm _{0,333} Ag _{0,120} Al _{0,267} Ge _{0,280}	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4447(2)	0,6949(3)	1,4629(6)	0,4521(3)
		II	Fe ₂ P	0,7115(1)	—	0,4351(1)	0,19074(8)
		III	α -ThSi ₂	0,42037(3)	—	1,4668(1)	0,25919(3)
44	Sm _{0,333} Ag _{0,067} Al _{0,267} Ge _{0,333}	Ι	AlB_2	0,42815(6)	_	0,4106(2)	0,06518(3)
		Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4386(2)	0,7053(3)	1,4489(7)	0,4482(4)
45	Sm _{0,333} Ag _{0,033} Al _{0,267} Ge _{0,367}	III	α -ThSi ₂	0,41990(2)	—	1,4627(1)	0,25789(3)
46		SmAg _{1,72-1,42}	KHg ₂	0,46063(7)	0,7325(1)	0,7884(1)	0,26598(7)
	Sm _{0,333} Ag _{0,300} Al _{0,300} Ge _{0,067}	Al _{0.28-0.58}					
		II	Fe ₂ P	0,7190(1)	_	0,43118(8)	0,19304(5)
		III	α -ThSi ₂	0,42023(4)	-	1,4643(2)	0,25859(5)
47	Sm _{0,333} Ag _{0,100} Al _{0,300} Ge _{0,267}	II	Fe ₂ P	0,71143(7)	_	0,43459(6)	0,19049(4)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0,4453(2)	0,6942(3)	1,4621(6)	0,4520(3)
10	Sm Ag Al Ga	III	α -ThSi ₂	0,42020(3)	-	1,4650(1)	0,25867(3)
40	SIII _{0,333} Ag _{0,067} AI _{0,300} Ge _{0,300}	II	Fe ₂ P	0,71129(7)	_	0,43510(8)	0,19064(5)
49	Sm _{0,333} Ag _{0,033} Al _{0,300} Ge _{0,334}	III	α -ThSi ₂	0,41981(3)	-	1,46162(9)	0,25759(3)
50	Sm Ag Al Ga	II	Fe ₂ P	0,71066(8)	-	0,43698(6)	0,19112(4)
50	SIII _{0,333} Ag _{0,167} AI _{0,334} Oe _{0,166}	SmAl ₂	MgCu ₂	0,7938(1)	—	-	0,5002(1)
		III	α -ThSi ₂	0,42038(5)	-	1,4658(2)	0,25903(6)
51	Sm _{0,333} Ag _{0,087} Al _{0,334} Ge _{0,246}	II	Fe ₂ P	0,71188(9)	_	0,43422(7)	0,19057(5)
		Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	сліди	_	_	-
52	Sm Ag Al Go	III	α -ThSi ₂	0,42012(9)	-	1,46462(3)	0,25851(2)
52	SIII0,333A20,033A10,334OC0,300	Sm ₃ Ag ₄ Ge ₄	$Gd_3Cu_4Ge_4$	0,4449(1)	0,6945(2)	1,4630(6)	0,4521(3)
52	Sm Ag Al Ga	III	α -ThSi ₂	0,42042(2)	-	1,4667(1)	0,25924(3)
33	SIII _{0,333} Ag _{0,033} Al _{0,367} Ue _{0,267}	П	Fe ₂ P	0.7118(1)	_	0.4322(1)	0.18963(7)

1	2	3	4	5	6	7	8
54	Sm Ag Al Go	SmAl ₂	MgCu ₂	0,79476(9)	_	-	0,5020(1)
	SIII _{0,333} Ag _{0,200} Al _{0,400} Ge _{0,067}	II	Fe ₂ P	0,71718(9)	-	0,43317(6)	0,19295(5)
55	Sm Ag Al Go	III	α -ThSi ₂	0,42038(4)	-	1,4672(2)	0,25928(4)
55	SIII _{0,333} Ag _{0,033} Al _{0,434} Ge _{0,200}	SmAl ₂	MgCu ₂	0,79378(9)	_	-	0,50014(9)
		II	Fe ₂ P	0,71346(8)	—	0,43268(5)	0,19074(4)
56	Sm _{0,333} Ag _{0,067} Al _{0,467} Ge _{0,133}	SmAl ₂	MgCu ₂	0,79363(8)	—	-	0,49987(9)
		III	α -ThSi ₂	0,4204(1)	—	1,4644(6)	0,2588(1)
57	Sm Al Ca	III	α -ThSi ₂	0,42015(4)	_	1,4641(2)	0,25846(4)
	SIII _{0,333} AI _{0,500} Ge _{0,167}	SmAl ₂	MgCu ₂	0,79365(7)	_	_	0,49990(7)
50	Sm Ag Al Go	SmAl ₂	MgCu ₂	0,79376(6)	_	_	0,50011(7)
58	SIII _{0,333} Ag _{0,067} AI _{0,534} Ge _{0,066}	Π	Fe ₂ P	0,71108(8)	—	0,43530(6)	0,19061(4)

* I – тетрарна сполука SmAg_{0,55-0,36}Al_{0,43-0,80}Ge_{1,02-0,84}; II – твердий розчин на основі сполуки SmAg_{1,40-0,98}Ge_{0,60-1,02}; III – твердий розчин на основі сполуки SmAl_{1,22-0,95}Ge_{0,78-1,05}; X – неідентифіковані фази.

Рис. 2. Окремі фазові рівноваги в системі SmAg₂-SmAl₂-SmGe₂ при 873 К.

Рис. 3. Параметри елементарної комірки для твердого розчину на основі сполуки $SmAg_{1,40}$. _{0.98}Ge_{0.60-1,02} (**II**) із структурою типу Fe₂P (ізоконцентрати 0,267-0,300 та 0,334 ат. частки Ag).

В межах області гомогенності цієї сполуки при зменшенні вмісту Ag (0,467 - 0,327 ат. частки) та збільшенні вмісту Ge (0,200 - 0,340 ат. частки) параметр *с* збільшується, тоді як параметр *а* та об'єм елементарної комірки зменшуються, що є результатом заміщення більших за розміром атомів Ag на менші атоми Ge ($r_{Ag} = 0,144, r_{Ge} = 0,137$ нм).

В результаті дослідження чотирикомпонентних сплавів у системі Sm-Ag-Al-Ge (0,333 ат. частки Sm) при 873 К виявлено існування тетрарної сполуки SmAg_{0,55-0,36}Al_{0,43-0,80}Ge_{1,02-0,84} (I) із структурою типу AlB₂ та двох обмежених твердих розчинів на основі тернарних сполук SmAg_{1,40-0,98}Ge_{0,60-1,02} (II) та SmAl_{1,22-0,95}Ge_{0,78-1,05} (III) із структурами типів Fe₂P (*P*-62*m*) та α -ThSi₂ (*I*4₁/*amd*), відповідно. Склад шихти і окремі фазові рівноваги на перерізі SmAg₂-

SmAl₂-SmGe₂ (873 K) зображено на рис. 2.

Залежність параметрів елементарної комірки для твердого розчину на основі сполуки SmAg_{1,40}. 0,98 Ge_{0,60-1,02} (II) з гексагональною структурою типу Fe₂P від вмісту Al зображено на рис. З та 4. При зменшенні вмісту Ge (0,334-0,200 ат. частки) та збільшенні вмісту Al (0-0,222 ат. частки) і сталому вмісті Ag параметр *а* зменшується, тоді як параметр *с* збільшується.

Сплави: ⊕ № 22-34; О № 20-29-38; ● № 3-14-23

При зменшенні вмісту Ag (0,400-0,222 ат. частки) та збільшенні вмісту Al і сталому вмісті Ge параметри елементарної комірки для твердого розчину змінюються аналогічно. Слід зазначити, що контактні відстані між атомами малого розміру в структурі типу Fe₂P знаходяться, переважно, в площині *ab*. Така зміна параметрів елементарної

Таблиця З

основі сполуки зпіляд _{1,40-0,98} 00-0,60-1,02 (п) із структурою типу то <u>г</u> і								
C	VEC		Основа	Висота/	Основа	Висота/		
Сплав, ат. частка	VECA	<i>и_М</i> , нм	призми Sm ₆	основа Sm ₆	призми M_6	основа M_6		
Sm _{0,333} Ag _{0,400} Ge _{0,267}	3,70	0,1413	0,3760	1,1340	0,3064	1,3915		
Sm _{0,333} Ag _{0,334} Ge _{0,333}	4,00	0,1406	0,3756	1,1361	0,3033	1,4069		
Sm _{0,333} Ag _{0,334} Al _{0,067} Ge _{0,266}	3,90	0,1412	0,3721	1,1519	0,3051	1,4047		
Sm _{0,333} Ag _{0,334} Al _{0,100} Ge _{0,233}	3,85	0,1415	0,3722	1,1544	0,3012	1,4264		
Sm _{0,333} Ag _{0,334} Al _{0,133} Ge _{0,200}	3,80	0,1418	0,3715	1,1586	0,2987	1,4410		
Sm _{0,333} Ag _{0,300} Al _{0,067} Ge _{0,300}	4,05	0,1408	0,3744	1,1483	0,2946	1,4594		
Sm _{0,333} Ag _{0,267} Al _{0,133} Ge _{0,267}	4,10	0,1411	0,3705	1,1690	0,2909	1,4888		
Sm _{0,333} Ag _{0,267} Al _{0,167} Ge _{0,233}	4,05	0,1414	0,3692	1,1783	0,3025	1,4381		
Sm _{0,333} Ag _{0,267} Al _{0,200} Ge _{0,200}	4,00	0,1417	0,3674	1,1875	0,2959	1,4745		
Sm _{0,333} Ag _{0,222} Al _{0,222} Ge _{0,223}	4,16	0,1414	0,3686	1,1828	0,3018	1,4449		

Значення VEC_A та співвідношення висота/основа тригональних призм Sm₆ і M_6 для твердого розчину на основі сполуки SmAg_{140,00}Ge_{040,102} (**II**) із структурою типу Fe₂P

Таблиця 4

Значення VEC_A та співвідношення висота/основа тригональних призм Sm₆ для твердого розчину на основі сполуки SmAl_{1.22-0.95}Ge_{0.78-1.05} (**III**) із структурою типу α-ThSi₂

Сплав, ат. частка	VECA	<i>r_M</i> , нм	Основа призми Sm ₆	Висота призми Sm ₆	Висота/ основа Sm ₆
Sm _{0,333} Ag _{0,033} Al _{0,267} Ge _{0,367}	4,95	0,1398	0,4222	0,4199	0,9946
Sm _{0,333} Ag _{0,033} Al _{0,300} Ge _{0,334}	4,90	0,1401	0,4219	0,4198	0,9950
Sm _{0,333} Ag _{0,033} Al _{0,334} Ge _{0,300}	4,85	0,1404	0,4228	0,4201	0,9936
Sm _{0,333} Ag _{0,033} Al _{0,367} Ge _{0,267}	4,80	0,1407	0,4234	0,4204	0,9929

комірки узгоджується з радіусами атомів ($r_{Ag} = 0,144$, $r_{Al} = 0,143$, $r_{Ge} = 0,137$ нм).

Крім розміру атомів важливе значення для твердих розчинів відіграє утворення також електронний фактор. Заміщення атомів Ge з чотирма валентними електронами на атоми Al, які мають три електрони на зовнішньому рівні, та сталому вмісті Ад супроводжується зменшенням концентрації валентних електронів на один атом статистичної суміші M = Ag + A + Ge (VEC_A [8]). При заміщенні атомів Ад з одним валентним електроном на атоми Al та сталому вмісті Ge значення VEC_A збільшується. В межах твердого розчину на основі сполуки SmAg_{1,40-0,98}Ge_{0,60-1,02} (II) із структурою типу Fe₂P значення VEC_A змінюється в межах 3,70-4,16 (табл. 3). Слід зауважити, що усереднений радіус атомів статистичної суміші М (r_M) для граничних складів твердого розчину однаковий.

Аналіз параметрів елементарної комірки в області твердого розчину на основі алюмогерманіду SmAl_{1,22-0,95}Ge_{0,78-1,05} (III) 3 тетрагональною структурою типу α-ThSi2 показав, що при зменшенні вмісту Ge (0,367-0,260 ат. частки) та збільшенні вмісту Al (0,267-0,407 ат. частки) і сталому вмісті Ag параметри а та с збільшуються (рис. 5). Атоми малого розміру в структурі типу α-ThSi₂ утворюють тривимірний каркас, в якому кожний атом має три зв'язки. В межах твердого розчину на основі сполуки SmAl_{1,22-0,95}Ge_{0,78-1,05} (III) значення VEC_A змінюється в межах 4,80-4,95 (табл. 4). При заміщенні атомів Ge на атоми Al та сталому вмісті Ag значення VEC_A зменшується.

Сплави: О № 45-49-52-53

Рис. 5.Параметри елементарної комірки для твердого розчину на основі сполуки $SmAl_{1,22}$. 0,95 $Ge_{0,78-1,05}$ (III) із структурою типу α -ThSi₂ (ізоконцентрата 0,033 ат. частки Ag).

Кристалічні структури типів Fe₂P та α -ThSi₂ характеризуються тригонально-призматичною координацією атомів малого розміру [9]. У випадку структури типу α -ThSi₂ (як і типу AlB₂), тригональні призми побудовані виключно атомами Sm та повністю заповнюють простір. У структурі типу Fe₂P колони тригональних призм Sm₆, з'єднані за рахунок спільних ребер, утворюють канали, в яких розміщені колони тригональних призм M_6 . Нами

проаналізовано деформації призм у цих структурах (див. табл. 3, 4). Висота призм Sm_6 та M_6 у структурі типу Fe₂P дорівнює значенню параметра с елементарної комірки, а їхні основи можна обчислити за формулами $a \sqrt{3x_1^2 - 3x_1 + 1}$ (для Sm₆) та $\sqrt{3} ax_2$ (для M_6), де x_1, x_2 – координати атомів Sm та М, відповідно. Значення співвідношення висота/основа, яке відображає деформацію призм, більше від 1. тобто тригональні призми видовжені вздовж осей шостого порядку. При збільшенні вмісту Аl та зменшенні вмісту Ge та сталому вмісті Ag в твердому розчині на основі сполуки SmAg_{1.40-} $_{0.98}$ Ge $_{0.60-1.02}$ **(II)** значення співвідношення висота/основа збільшується. Аналогічна деформація призм має місце при збільшенні вмісту Al та зменшенні вмісту Ад та сталому вмісті Ge. У випадку структури типу α-ThSi2 висота призми дорівнює значенню параметра а елементарної комірки, а

основа – $c/2\sqrt{3}$. В межах твердого розчину на основі сполуки SmAl_{1,22-0,95}Ge_{0,78-1,05} (**III**) значення співвідношення висота/основа < 1, тобто тригональні призми сплющені. При збільшенні вмісту Al та зменшенні вмісту Ge та сталому вмісті Ag спостерігається зменшення значення співвідношення висоти/основи. Отже, зв'язки між атомами малого розміру в структурі типу α -ThSi₂ послаблюються.

У випадку тетрарної фази SmAg_{0.55-0.36}Al_{0.43-} 0.80 Ge_{1.02-0.84} (I) із гексагональною структурою типу AlB₂ співвідношення параметрів елементарної комірки c/a < 1, тобто тригональні призми Sm₆ сплющені. Однак, в межах області гомогенності цієї сполуки при збільшенні вмісту Al (0,120 - 0,267 ат. зменшенні вмісту частки) та Ag (0, 20 -(0,347 - 0,280 ат. частки) 0,12 ат. частки) i Ge співвідношення с/а збільшується [1]. .

- [1] Р. Козак, І. Лабінська, Р. Гладишевський. Тетрарна сполука змінного складу в системі Sm-Ag-Al-Ge // Вісн. Львів. ун-ту., сер. хім., (2010, в друці).
- [2] O.V. Zhak, B.M. Stel'makhovych, Yu.B. Kuz'ma. The Sm-Ag-Al system // J. Alloys Compd., 237, pp. 144-149 (1996).
- [3] P. Villars, K. Cenzual. Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds // Materials *Park, OH: American Society for Metals*, (2007).
- [4] I. Melnyk. Równowagi fazowe oraz struktura krystaliczna związków w ukladach potrójnych Sm-Al-{Si,Ge}: Praca doktorska. UMCS, Lublin, 171 p. (2005).
- [5] I.A. Savysyuk, E.I. Gladyshevskii, R.E. Gladyshevskii. Isothermal section of the Pr-Ag-Ge phase diagram at 873 K and crystal structure of new ternary germanides // *J. Alloys Compd.*, **314**, pp. 167-169 (2001).
- [6] B. Gibson, R. Pöttgen, R.K. Kremer, A. Simon, K.R.A. Ziebeck. Ternary germanides LnAgGe (Ln = Y, Sm, Gd-Lu) with ordered Fe₂P-type structure // J. Alloys Compd., 239, pp. 34-40 (1996).
- [7] R.A. Young, A.C. Larson, C.O. Paiva-Santos. Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns // Atlanta, GA: School of Physics, Georgia Institute of Technology, 1998.
- [8] E. Parthé. Elements of Inorganic Structural Chemistry // Petit-Lancy, Switzerland: K. Sutter Parthé Publisher, 170 p. (1996).
- [9] П.И. Крипякевич. Структурные типы интерметаллических соединений. Наука, М. 288 (1977).

R.S. Kozak, R.E. Gladyshevskii

The Sm-Ag-Al-Ge System (33.3 at.% Sm)

Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, UA-79005 Lviv, Ukraine, e-mail: <u>r-kozak@ukr.net</u>

Based on X-ray powder diffraction data the phase equilibria in the Sm-Ag-Al-Ge system at 873 K in the region of 33.3 at.% Sm were determined. The existence of the quaternary compound $\text{SmAg}_{0.55-0.36}\text{Al}_{0.43-0.80}\text{Ge}_{1.02-0.84}$ with an AlB₂-type structure and limited solid solutions based on the ternary compounds $\text{SmAg}_{1.40-0.98}\text{Ge}_{0.60-1.02}$ and $\text{SmAl}_{1.22-0.95}\text{Ge}_{0.78-1.05}$ with Fe₂P- and α -ThSi₂-type structures, respectively, was established. Within the whole homogeneity range of the AlB₂-type quaternary compound and the α -ThSi₂-type solid solution the height/base ratio of the trigonal prisms Sm₆ is less than 1 (the prisms are flattened) and increases with increasing valence electron concentration per atom of the statistical mixture M = Ag+Al+Ge occupying the prism centers. The height/base ratio of the trigonal prisms Sm₆ within the homogeneity range of the Fe₂P-type solid solution is greater than 1 and increases with increasing Al and decreasing Ge (or Ag) content for a fixed Ag (or Ge) content.

Key words: samarium, silver, aluminum, germanium, X-ray powder diffraction, solid solution, quaternary compound, crystal structure.