РАСЅ 78.70.EN, 31.15.-Р УДК 539.2: 543.42

ISSN 1729-4428

Я.В. Зауличний, О.О. Фоя, В.Л. Бекеньов Дослідження особливостей електронної структури нанопорошків ВаТіО₃

Інститут Проблем Матеріалознавства НАН України, Крижанівського 3, м. Київ, 03680, т.8-044-424-33-64, Україна E-mail: zaulychnyj@ipms.kiev.ua

Проведені дослідження електронної структури нанопорошків первоскітного $BaTiO_3$ в залежності від розміру наночастинок. Методом ульрам'якої рентгенівської емісійної спектроскопії одержані смуги ОКа і ТіLa, які відображають розподіл Tisd- і *Op*- електронних станів. Парціальні щільності електронних станів атомів, та карти зрізу густини заряду в первоскінному $BaTiO_3$ в розраховані методом FLAPW. Показано, при подрібненні порошків $BaTiO_3$ до нанорозміру зникає розщеплення енергетичних рівнів тільки Tid+Op-гібирдних зв'язуючих станів та підвищується внутрішня енергія.

Ключові слова: титанат барія, електронна структура, рентгенівський емісійний спектр, валентна зона

Стаття поступила до редакції 23.07.08; прийнята до друку 15.06.09.

Вступ

Унікальні фероелектричні та інші властивості титаната барія, в основному, визначаються його електронною структурою [1-4]. Тому вони повинні суттєво залежати від її зміни при зменшенні частинок порошків до нанорозмірів. При порівняльному дослідженні електронної структури методом ультрам'якої рентгенівської спектроскопії крупних і нанорозмірних фракцій порошків цілого ряду [5-9] сполук було кристалічних виявлено енергетичний перерозподіл валентних електронних станів при переході від крупних до нанопорошків. В результаті диспергування r-TiO₂ (r-рутил) до розмірів частинок d = 10 нм [9] зонна енергія збільшується на 18 %. Електронна структура крупних порошків і монокристалів ВаТіО₃ експериментально вивчалася багатьма методами [10-12], в тому числі й методами рентгенівської емісійної, абсорбційної [13] i фотоелектронної [14-16] спектроскопії. Теоретичні електронної структури розрахунки ідеальних кристалів титанату барія проводились різноманітними методами [17-22].

Вивчення електронної структури ВаТіО₃ в нанорозмірному та крупнокристалічному станах методами рентгенівської емісійної та фотоелектронної спектроскопії [23] виявило звуження рентгенівських емісійних смуг i фотоелектронних спектрів валентної зони, що відображає енергетичний перерозподіл Тіd- та Орелектронів, внаслідок суттєвого вкладу в міжатомну взаємодію поверхневих атомів наночастинок. Однак в цій роботі не зіставлялись в єдиній енергетичній шкалі ТіLα- та ОКα-смуги і данні розрахунків парціальних щільностей заселених Тіd- та Ор-станів. Через це не проводились аналіз їх енергетичного перерозподілу при переході від крупних до Аналіз кристалічних нанопорошків. структур рутилоподібного r-TiO₂ і перовскітного ВаТіО₃ показав, що в ВаТіО₃ всі відстані більші від подвійного іонного радіуса кисню 2RO²⁻, тоді як в г- TiO_2 дві відстані O-O<2RO²⁻ [24, 25]. Це вказує на те, що в ВаТіО₃ відсутня ковалентно-зв'язуюча О-Овзаємодія, яка існує в r-TiO₂ [9]. В обох кристалах зарядові стани іонів титану і кисню за даними рентгеноелектронних вимірювань енергій зв'язку O1s- і Ті2p_{1/2}, Ті2p_{3/2}-електронів однакові [1, 23]. Значить, на характері енергетичного перерозподілу, змінах зонної енергії електронів внаслідок подрібнення порошків від крупних до нанорозмірів можуть відобразитися лише відмінності в участі електронів в Ті-О- і О-О-зв'язках.

Тому потрібно визначити вплив особливостей енергетичного перерозподілу Tid- та Ор-електронів на зміну зонної енергії ВаTiO₃ при диспергуванні його порошків до нанорозмірів.

I. Методика експерименту

Для дослідження були взяті хімічно чисті порошки з питомими поверхнями $S_{nur} = 2$ та 40 м²/г, отримані в ІПМ НАНУ за методикою [26]. Аналіз

поверхонь обох порошків по оглядових рентгеноелектронних спектрах показав, так само як і в [23], що їх складові ідентичні, і вони практично не містять домішок, які можуть вплинути на параметри спектрів, що вивчаються. Рентгенівські емісійні спектри досліджувалися повторно, оскільки для оцінки зміни зонної енергії необхідно було одержати I(E)_{ТіLа} та I(E)_{ОКа} в цифровому вигляді з вищою точністю, а в [23] ці спектри були записані аналоговим способом з невеликою нелінійністю енергетичної шкали. Тому ТіLа- і ОКа-смуги були одержані при тих самих умовах, що і в [9], з прецизійною реєстрацією кута падіння ф, що змінюється в рівнянні гратки $\lambda = \Lambda (\cos \psi - \cos \phi)$, де Λ - період ґратки, ψ - кут дифракції. Кут падіння, який відповідає кожному значенню довжини хвилі λ, перерахованого в енергію фотона, визначався за допомогою лінійного індуктосина, а інтенсивності спектра - цифровим лічильником імпульсів. Це забезпечило необхідну для оцінки зонної енергії лінійність енергетичних шкал і достовірні значення I(Е) для ТіLа- і ОКа-смуг.

У поверхневих атомів наночастинок зникає розщеплення енергетичних piвнів лише тих Tisd- і Ор- електронних станів, які були задіяні у Ті-О зв'язках, що розірвались при диспергуванні ВаТіО₃ нанорозмірів. Оскільки енергетичний ло перерозподіл цих станів при переході від масивних до наночастинок приводить до зміни зонної енергії, то для аналізу, цього процесу, необхідно з'ясувати, в особливостях ТіLа і ОКа-смуг яких емісії відображались ці стани до розриву зв'язків у крупних частинках. Тому для цього треба зіставити і порівняти в єдиній енергетичній шкалі отримані спектри та розрахунки парціальної щільності Tid- та Ор-станів ідеального кристалу. До того ж необхідно знати розподіл електронної щільності між атомами ВаТіО₃ для з'ясування характерних для цього кристалу особливостей міжатомних зв'язків. Тому в роботі проведені розрахунки електронної структури лінійним методом приєднаних плоских хвиль (FLAPW) за допомогою програм WIEN97 [27]. Цей метод є одним з найбільш точних методів розрахунку твердих тіл. зонної структури Схема самоузгодження включає як остовні, так і валентні електрони. В рамках даного методу кожен атом оточується так званою muffin-tin сферою. Радіуси сфер повинні бути вибрані таким чином, щоб сфери сусідніх атомів не перекривалися. Простір між сферами носить назву міжсферичної області. Всередині muffin-tin сфер базисні функції розвиваються по комбінаціям сферичних гармонік, а в міжсферичній області – по плоским хвилям. Аналогічне розвинення використовується і для потенціалу. Для розрахунку використовувалися експериментальні параметри гратки [6] а=4,0062 Å, с=2,959 Å. Muffin-tin радіуси для Ва, Ті, О були взяті рівними 2,70, 1,90, 1,60 ат. од. (1,4288, 1,0054 та 0,8467 Å, відповідно). Розвинення по сферичним гармонікам проводилося з урахуванням гармонік до I_{max}=10. Обмінно-кореляційні ефекти враховувались в узагальнено-градієнтному наближенні у

Рис. 1. Порівняння суміщенних в єдиній енергетичній шкалі ОК α - і ТіL α - емісійних спектрів від ВаТіО₃ та теоретичних розрахунків парціальних О*p*- і Ті*d*-густин.

відповідності до роботи [9]. Число базисних функцій, що враховуються в розрахунку, визначається значенням параметра RK_{max}, де R – найменший радіус muffin-tin сфери, K_{max} – максимальний модуль вектора оберненої ґратки. Цей параметр був взятий рівним 7, що приводить до секулярної матриці розміром 630х630 в Г-точці. Інтегрування по зоні Брилюена проводилося методом тетраедрів [9] з використанням 1000 точок **k** в повній зоні.

II. Результати та їх обговорення

Порівняння вивчених в однакових умовах рентгенівських ТіLa- і ОКа-смуг емісії крупного $(S_{пит}=2 \text{ м}^2/\Gamma, d=500 \text{ нм})$ і нанорозмірного $(S_{пит}=40 \text{ м}^2/\Gamma, d=500 \text{ нм})$ d=24.9 нм) порошків титанату барія виявило зміни форми і звуження обох смуг нанопорошка, тоді як при дослідженні таких порошків TiO₂ [9] істотно тільки ОКα-смуга. Розглядаючи змінюється співставленні за даними про енергії зв'язку Ті2р_{3/2} та Ols-електронів в єдиній енергетичній шкалі (рис. 1) вказані емісійні смуги бачимо, що ОКα-смуга, одержана від нанопорошку ВаТіО₃ виявилася при I > 0,5I_{max}, вужчою на 0,2÷0,5 eB а ïï короткохвильовий контур змістився y високоенергетичний бік на 0,5÷0,9 eB, у порівнянні з ОКα-смугою емісії крупного порошку.

При цьому форма ОК α -смуги нанопорошка стала асиметричною до такого ступеня, що в її низькоенергетичній частині проглядається підсмуга "а", яка відсутня у ОК α -спектрі крупного порошку. Розглянуте розщеплення ОК α нанорозмірного ВаТіО₃ вказує на існування в останньому значно більшої щільності незв'язуючих Ор-станів, ніж задіяних в Tisd+Op-гібридних зв'язках. Аналіз суміщених в єдиній енергетичній шкалі ТіL α -смуг емісії показав, що форма ТіL α -смуги емісії, одержаної від нанопорошку, суттєво відрізняється від такої, виміряної в крупному ВаТіО₃. Ця відмінність – результат зсуву низькоенерегтичного контуру в бік високих енергій і зниження інтенсивності напливу "а", а також зміщення високоенергетичного контуру

Рис. 2. Порівняння теоретичних розрахунків парціальних густин ВаТіО₃ та ТіО₂ зі структурою рутилу.

головного максимуму "b" цієї смуги, одержаної від нанопорошку, відносно таких в крупному ВаТіО₃. Це вказує на зменшення щільності Tisd-станів, що відображаються в ТіLα-смузі емісії, в області енергій, яка відповідає напливу "а" внаслідок переміщення їх в область енергій, розташованій ближче до мінімуму, який розділяє максимуми "b" та "с" в цій смузі. Таким чином, з описаного видно, що, на відміну від TiO₂, де при нанодиспергуванні проходить енергетичний перерозподіл тільки Ор-станів, в титанаті високоенергетичний барію бік у перерозподіляються також і Тіd-стани. Причина цієї кристься вілмінності. очевидно, в кристалоструктурних параметрах цих сполук, тобто в найближчому оточенні та в суттєвих відмінностях між О-О та Ті-О-відстанями в рутильній фазі діоксида титану і перовскітній модифікації титанату барія. Аналізуючи і порівнюючи міжатомні відстані в цих кристалах видно, що в r-TiO₂ [9] є О-О-відстані, величина яких менша ніж подвійний іонний радіус кисню, тоді як в ВаТіО₃ всі вони рівні 2,96 Å і більші, ніж 2RO²⁻=2,70 Å. При цьому Ті-О-зв'язки в ВаТіО₃ всі рівні 2,003 Å і вони дещо довші, ніж в r-TiO₂ (Ті-O=1,9807 та 1,9467 Å). Тому густина електронів, які заселяють стани, задіяні в гібридних Tid+Opзв'язках, в міжатомному просторі ближче до середини Ті-О-відстаней може суттєво відрізнятися від такої в r-TiO2. Тому повинні бути суттєві відмінності як в енергетичному розподілі електронів, так і в картах щільності електронного заряду в різних кристалографічних площинах цих кристалів. Природно, що всі ці фактори суттєво відіб'ються на енергетичному перерозподілі валентних електронних станів при досягненні нанорозмірних величин частинок ВаТіО₃ та ТіО₂. Виконані необхідні для цього розрахунки електронної структури, а саме парціальних щільностей станів всіх атомів, що входять до складу ВаТіО₃, і порівняння їх з електронної структури розрахунками r-TiO₂, проведених тим же методом FLAPW представлені на рис. 2.

що суттєво різняться енергетичні Видно. розподіли валентних електронів усіх симетрій атомів титана і кисню. В цих кристалах найбільша відмінність виражається в ширинах валентних зон. В той же час енергетичні розподіли Тіd- та Ор-станів в титанаті барію (рис. 2), виключенням за високоенергетичного що відповідає піка, незв'язуючим Ор-станам, дуже подібні, в тому числі і в області енергій, де зосереджені Tit2g-стани з меншою енергією зв'язку і заселені електронами, що найбільш віддалені від кисню та титану. Це свідчить про високий ступінь гібридизації зв'язуючих Tid+Opстанів. Однак у ТіО2 співвідношення значень щільності станів навіть біля дна зони, де зосереджені Tid+Op-гібридні зв'язуючі стани, непропорційні, бо тут, імовірно, частково додається електронна щільність Орр-зв'язуючих станів, що забезпечують ковалентні О-О-зв'язки, довжина яких менша, ніж $2RO^{2-}$. Ще більше у TiO₂ відрізняються щільності Tid та Ор-станів в інтервалі енергій (-3.8 ÷ -1.5) еВ, де максимальне значення N(E)Tid, яке відповідає

особливостям Ван-Хова, менш ніж 0,3 ел.ст/еВ/ком, а інші значення N(E) тут не перевищують 0,2 ел.ст/еВ/ком. Тоді як значення щільності Ор-станів тут вище ніж 0,6 ел.ст/еВ/ком в вузькому інтервалі (- $3.8 \div -3.0$) еВ, а в інший частині коливається поблизу значення 1,1 ел.ст/еВ/ком. Це свідчить про те, що тут в TiO₂ основний вклад вносять також Орр-зв'язуючі стани. Слід відзначити також, що підсмуга незв'язуючих Ор-станів, що знаходяться в інтервалі (-1.5÷0) еВ, в ВаТіO₃ вдвічі вища, ширша і краще відділена від підсмуги гібридизованих станів, ніж у TiO₂. З цього порівняння N(E) видно, що заселеність гібридизованих Tid+Op-станів у ВаТiO₃ вище, ніж у TiO₂. При нанодиспергуванні внаслідок розриву

Рис. 3. Розраховані контури сталої зарядової густини ВаТіО₃ в площинах: (100) – рис. a (в центрі атом кисню); ($\overline{1}$ 10) – рис. δ .

зв'язків в ВаТіО₃ буде зникати розщеплення енергетичних рівнів тільки Тіd+Ор-гібирдних зв'язуючих станів, на відміну від ТіО₂, де зникає розщеплення як Тіd+Ор, так і Орр-станів, задіяних в O-O-зв'язках. При цьому, за рахунок заселеності електронами Орр-зв'язків в ТіО₂, заселеність Тіd+Ор значно менша, ніж у ВаТіО₃, як показано вище. Карта розподілу електронної щільності (рис. За і рис.Зб) теж вказує на існування в ВаТіО₃ лише Ті-О зв'язків. Тому більші зміни тонкої структури ТіLα-смуги в ВаТіО₃, ніж у ТіО₂ внаслідок їх диспергування до нанорозмірів пов'язані з більшою заселеністю в титанаті барію Тіd-станів. розриві Ті-О-зв'язків, енергія задіяних в цих зв'язках електронів зростає, і відповідні рівні зосереджуються біля стелі валентної зони. В результаті цього повинна, як і у випадку TiO₂ [9], зростати зонна енергія. Її оцінка, проведена за методикою аналогічною для TiO₂, показала, що $\varepsilon_{\rm k}/\varepsilon_{\rm H}=0,9$ ($\varepsilon_{\rm k}$ – зонна енергія крупного порошку, $\varepsilon_{\rm H}$ – зонна енергія).

Таким чином, енергетичний перерозподіл валентних електронів внаслідок нанодиспергування порошків ВаТіО₃ від 500 мкм до 24 нм призвів до зростання внутрішньої енергії на 10 %.

Висновки

Отже, внаслідок нанодиспергування ВаТіО₃ при

- L.T. Hudson, R.L. Kurte, S.W. Robey, Photoelectron spectroscopic study of the valence and core-level electronic structure of BaTiO₃ // *Phys. Rev. B*, 47(3), pp. 1174-1180 (1993).
- [2] R. Cohen and H. Krakauer, Electronic structure studies of the differences in ferroelectric behavior of BaTiO₃ and PbTiO₃ // *Ferroelectrics*, (136), pp.65-83 (1992).
- [3] R. Cohen, Origin of ferroelectricity in perovskites: The principal problems from a theoretical perspective // *Ferroelectrics*, (150), pp.1-12 (1993).
- [4] R. Cohen and H. Krakauer, Lattice dynamics and origin of ferroelectricity in BaTiO₃: Linearized-augmentedplane-wave total-energy calculations // *Phys. Rev. B*, **42**, pp 6416-6423 (1990).
- [5] Е.А. Жураковский, В.И. Трефилов, Я.В. Зауличный, Г.И. Саввакин. Особенности энергетического спектра электронов в ультрадисперсных алмазах, получаемых из сильнонеравновесной углеродной плазмы // Докл.АН СССР, **284** (6), сс. 1360-1365 (1985).
- [6] Е.А. Жураковский, Я.В. Зауличный, В.С. Нешпор и др. Особенности электронного строения ультрадисперсных порошков кубического нитрида бора // Порошковая металлургия, (1), сс. 72-76 (1991).
- [7] Я.В. Зауличный Рентгеноспектральное исследование электронной структуры и химической связи в ультрадисперсных порошках и полученных из них мелкокристаллических материалах. І. Нитрид титана // Порошковая металлургия, (7/8), сс.75-85 (1999).
- [8] Я.В. Зауличный Рентгеноспектральное исследование электронной структуры и химической связи в ультрадисперсных порошках и полученных из них мелкокристаллических материалах. II. Карбид титана // Порошковая металлургия, (9/10), сс.75-84 (1999).
- [9] А.А. Фоя, Я.В. Зауличный, В.И. Зарко, В.Л. Бекеньов. Сужение ультрамягких рентгеновских спектров и изменение зонной энергии электронов вследствие диспергирования порошков рутилоподобного TiO₂ до наноразмеров // Доповіді НАНУ, (2), сс. 76-81 (2007).
- [10] M. Cardona Optical Properties and Band Structure of SrTiO₃ and BaTiO₃ // Phys. Rev., 140, pp.A651-A655 (1965).
- [11] D. Bauerle, W. Braun, V. Saide, Vacuum Ultraviolet Reflectivity and Band Structure of SrTiO₃ and BaTiO₃ // Z. Phys. B, 29, pp. 179-184 (1978).
- [12] S.H. Wemple, M. Didomenco, Jr. and J. Camlibel, Dielectric and optical properties of melt-grown BaTiO₃ // Journal of Physics and Chemistry of Solids, 29, pp. 1797-1803 (1968).
- [13] Ю.Н. Ромащенко, И.А. Бритов, Т.М. Антоева, Рентгеноспектральное исследование характера химической связи в стеклах системы SiO₂-TiO₂ и кристаллических титанатах // Физика и химия стекла, 7 (4), сс. 391-396 (1981).
- [14] F.L. Battye, H. Hochst and A. Oldmann, Photoelectron studies of the BaTiO₃ and SrTiO₃ valence states // Solid State Communication, **19**, pp. 269 271 (1976).
- [15] H. Nahamatsu, H. Adachi and S. Iheda, Electronic structure of the valence band for perovskite-type titanium double oxides studied by XPS and DV-Xα cluster calculations // J. Electron Spectrosc. Relat. Phenom., (24), pp. 149-159 (1981).
- [16] P. Petrosa and F.M.Michel-Calendini, X-ray photoelectron spectra, theoretical band structures, and densities of states for BaTiO₃ and KNbO₃ // *Phys. Rev. B*, 17, pp. 2011-2020 (1978).
- [17] L.F. Mattheiss, Energy Bands for KNiF₃, SrTiO₃, KMoO₃, and KTaO₃ // *Phys. Rev. B*, **6**, pp. 4718–4740 (1972).

- [18] W. Zhang, R.D. King-Smith, Giant LO-TO splittings in perovskite ferroelectrics // Phys. Rev. Lett., 72, pp. 3618 (1994).
- [19] R.D. King-Smith and Vanderbilt, First-principles investigation of ferroelectricity in perovskite compounds // Phys. Rev. B, 49, pp. 5828–5844 (1994).
- [20] W.Y. Ching, Gu Z. Qand, First-principles calculation of the electronic and optical properties of LiNbO₃ // Phys. Rev. B, 50, pp. 1992–1995 (1994).
- [21] R. Ahuja, O. Ericson, Johanson, Electronic and optical properties of BaTiO₃ and SrTiO₃ // J. Appl. Phys., 90, pp. 1854-1859 (2001).
- [22] D. Bagayoko, G. Zhao, J. Fona, J. Wang, Ab initio calculations of the electronic structure and optical properties of ferroelectric tetragonal // J. Phys.: Condens. Matter, 10, pp. 5645-5655 (1998).
- [23] Я.В. Зауличний Рентгеноелектронне та рентгеноспектральне дослідження зміни електронної структури при диспергуванні порошку ВаТіО₃ // Фізика і хімія твердого тіла, **3** (4), сс. 401-406 (2002).
- [24] K. Sugiyama, Y. Takeuchi, Crystal structure of barium titanate // Zeitschrift fur Kristallographie, (194), pp. 305–310 (1991).
- [25] J.W. Edwards, R. Speiser, H. Jonson, Structure of Barium Titanate at Elevated Temperatures // J. Am. Chem. Society, 73, pp. 2934- 2935 (1951).
- [26] О.О. Васильків Синтез, еволюція морфології і спікання нанокристалічного порошку титанату барію в неізотермічних умовах: Автореф. Дис. ... канд. техн. наук. К., 18с. (1997).
- [27] P. Blaha, K. Schwarz, J. Luitz (1997), WIEN97, Vienna University of Technology (Imported and update Unix version of the original copyrighted WIEN-code, which was published by Blaha P., Schwarz K., Sorantin P., Trickey B., Comput. Phys. Commun. 59, 399-415 (1990).

Ja.V.Zaulichny, A.A.Foya, V.L.Bekenov

Investigation of Particularities Electronic Structure Nanopowders BaTiO₃

Institute of Material Science, Kyiv, Ukraine

Investigations of the electronic structure of nanopowders perovskite BaTiO3 have been performed depending on sizes. The ultrasoft x-ray emission spectroscopy has been used to obtain OK_{and} and TiL_{bands} , which represent Tisd- and Op- electronic states. Decomposed densities of states and charge-density contours of perovskite BaTiO3 have been calculated by the FLAPW method. It has been shown that internal energy increased and splitting of energy levels only Tid+Op-hybrid bonding states disappeared when decreasing size of BaTiO₃ powder to nanosize.