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imposed by quantum capacitance and kinetic inductance
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Dynamic conductance of quantum nano-scale conductors is an important
problem of nanoelectronics theory [1]. Generally, electrostatic capacitance of
the system “graphene strip — substrate — gate” plays a crucial role in grapheme
physics, being responsible for the “gate doping” of graphene with electrons or
holes [2]. However, later we examine the case of mono- and multilayer graphene
dynamic conductivity in drain — source circuit, without gate doping, with gate
not being included into such circuit. As it was demonstrated in [3], additional
quantum capacitance and kinetic inductance arise for such a circuit a result of a
correct solution of Boltzmann transport equation. Therefore equivalent circuit
for the long strip of graphene can be presented as a combination of quantum
capacitance C, and kinetic inductance L (see Fig.1).
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Fig.1. Equivalent circuit for a strip of graphene. R — graphene strip
resistivity, Re — contacts resistivity.

The quantum capacitance of the graphene strip can be presented [3] as:
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Here e is a charge of electron, f, is equilibrium distribution function, % is
energy. Summation in (1) is carried over all the sub-bands m, and wave-vectors
k in xy plane.
Kinetic inductance is introduced as:
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where / is a strip length between the contacts, v is electron speed in x direction
between source and drain. With allowance for the linear band spectrum of
graphene

E=1hmv .k, (3)

where v;-= 10° m/s, (1) and (2) can be rewritten approximately as:
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Here M is a total number of sub-bands, which is roughly equal to the
number of electronic have-wavelengths which fit in the graphene strip cross-
section in yz plane (across the current), <...> means average for electron drift in
x direction (along the current).

The impedance of the circuit, presented in Fig.1, is given by:
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For ® =0 (6) obviously yields:
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Z=2R +R. (7)
However, with the increase of the applied field frequency, the resonance

occurs at o, frequency when the imaginary part in (6) is zero and the resistivity
of the circuit reaches maximum:
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With allowance for (4), (5) one can see, that @, ~@_in the case, when
<v2>/ ve <<1.
Now let us estimate the frequencies, predicted by (8). For the high quality

graphene Landauer resistor [1], where electron passes from source to drain
without scattering and where with allowance for (3)<v2> ~v;, (8) yields:

o, ~ (@) 11=v, 11. (9)

This leads to the frequencies of GHz range for the submicron length of
graphene strip between the contacts. However, in a long graphene strip of mm
length order with a diffusive movement of electron from source to drain, where

1/<vz> ~uE,, 1 is electron mobility, E,, is average in time electric field in

source-drain circuit, one can get for £, ~10° V/m and u ~ 1 m*/Vs (which is a

typical value for CVD graphene) the frequency of MHz order. Therefore, by
varying CVD graphene strip length (in hundreds ym — mm range) and mobility
(in 0.1 — 1 m*/Vs range), we can fabricate filters for tens KHz — MHz range.
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